Skip to main content
Log in

Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to quantify the cooling conditions undergone by an ingot during direct-chill (DC) casting, thermocouples were immersed in the liquid pool and consequently entrapped in the solid, thus monitoring the temperature of the metal during its descent. Assuming steady-state thermal conditions, the time-dependent temperatures measured by these thermocouples were then converted into spacedependent temperature profiles. These values were the input of a Maximum A Posteriori (MAP) inverse method described by Rappaz et al.,[1] which has been adapted in this case to steady-state thermal conditions. This MAP method permits the deduction of the temperature-dependent thermal conductivity of the alloy, initially, and then of the highly nonuniform heat-flux distribution along the ingot rolling faces, in a second step. The obtained values are in good agreement with literature and clearly reflect the widely different boundary conditions associated with primary cooling (contact with the mold) and secondary cooling (water jet).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rappaz, J.-L. Desbiolles, J.-M. Drezet, C.-A. Gandin, A. Jacot, and P. Thévoz: in Modeling of Casting, Welding and Advanced Solidification Processes, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995, pp. 449–57.

    Google Scholar 

  2. J.-M. Drezet: Ph.D. Thesis No. 1509, EPF-Lausanne, Lausanne, 1996.

    Google Scholar 

  3. J.-M. Drezet, M. Rappaz, B. Carrupt, and M. Plata: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 821–30.

    CAS  Google Scholar 

  4. A. Mo, T. Rusten, H.J. Thevik, B.R. Henriksen, and E.K. Jensen: in Light Metals 1997, R. Huglen, eds., TMS, Warrendale, PA, 1997, pp. 667–74.

    Google Scholar 

  5. J.-M. Drezet and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3214–25.

    CAS  Google Scholar 

  6. H. Yu: Light Metals 1980, TMS, Warrendale, PA, 1980, pp. 613–28.

    Google Scholar 

  7. F.P. Incropera and D.P. de Witt: Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 1985, p. 461.

    Google Scholar 

  8. D.C. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13B, pp. 593–602.

    CAS  Google Scholar 

  9. J.F. Grandfield, A. Hoadley, and S. Instone: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 691–99.

    Google Scholar 

  10. J.F. Grandfield, K. Goodall, P. Misic, and X. Zhang: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 1081–90.

    Google Scholar 

  11. J.A. Bakken and T. Bergstrøm: Light Metals 1986, TMS, Warrendale, PA, 1986, pp. 883–89.

    Google Scholar 

  12. E.K. Jensen, S. Johansen, T. Bergstrøm, and J.A. Bakken: Light Metals 1986, TMS, Warrendale, PA, 1986, pp. 891–96.

    Google Scholar 

  13. L. Maenner, B. Magnin, and Y. Caratini: in Light Metals 1997, R. Huglen, ed., TMS, Warrendale, PA, 1997, pp. 701–07.

    Google Scholar 

  14. I. Opstelten and J. Rabenberg: in Light Metals 1999, C. Eckert, ed., TMS, Warrendale, PA, 1999, pp. 729–35.

    Google Scholar 

  15. J.V. Beck, B. Blackwell, and C.R. St Clair, Jr.: Inverse Heat Conduction—Ill-Posed Problems, Wiley, New York, NY, 1985.

    Google Scholar 

  16. J.V. Beck and K.J. Arnold: Parameter Estimation in Engineering and Science, Wiley, New York, NY, 1977.

    Google Scholar 

  17. G. Milano and F. Scarpa: Universita di Genova, Italia, private communication, 1994.

  18. P. Thévoz, M. Rappaz, and J.L. Desbiolles: in Light Metals 1990, C.M. Bickert, ed., TMS, Warrendale, PA, 1990, pp. 975–84.

    Google Scholar 

  19. A.L. Dons, E.K. Jensen, Y. Langsrud, E. Trømborg, and S. Brusethaug: in Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2135–46.

    Article  CAS  Google Scholar 

  20. D.C. Prasso, J.W. Evans, and I.J. Wilson: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1281–87.

    CAS  Google Scholar 

  21. J.A. Dantzig: Rev. Sci. Instrum., 1985, vol. 56 (5), pp. 723–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drezet, J.M., Rappaz, M., Grün, G.U. et al. Determination of thermophysical properties and boundary conditions of direct chill-cast aluminum alloys using inverse methods. Metall Mater Trans A 31, 1627–1634 (2000). https://doi.org/10.1007/s11661-000-0172-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0172-5

Keywords

Navigation