Skip to main content
Log in

Comparison between high and low strain-rate deformation of tantalum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To understand the constitutive behavior of tantalum, compression tests are performed over the range of strain rates from 0.0001/s to 3000/s, and at temperatures from 296 to 1000 K. The flow stress is seen to be representable as the sum of a thermal, an athermal, and a viscous drag component. At high strain rates (3000/s), the thermal component is observed to be expressible in terms of the temperature and the strain rate, whereas the athermal component is independent of these variables. At lower strain rates, however, such a separation of the effects of the strain, strain rate, and temperature on the flow stress is not easily achieved. At high enough temperatures, i.e., temperatures above which the thermal component is essentially zero, viscous drag appears to have a significant effect on the flow stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  2. W.H. Gourdin, and D. Lassila: Tantalum. Proc. Symp. Held at 125th TMS Annual Meeting and Exhibition, E. Chen, A. Crowson, E. Lavernia, and W. Ebihara, eds., TMS, Warrendale, PA, 1995 pp. 219–23.

    Google Scholar 

  3. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  4. H. Mecking, and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  5. Y. Estrin, and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  6. P.S. Follansbee, J.C. Huang, and G.T. Gray: Acta Metall. Mater., 1990, vol. 38, pp. 1241–54.

    Article  CAS  Google Scholar 

  7. H. Mecking and Y. Estrin: Constitutive Relations and Their Physical Basis: Proc. 8th Riso Int. Symp. on Metallurgy and Materials Science, S.I. Anderson, ed., Technical University Hamburg, Hamburg, 1990 pp. 123–45.

    Google Scholar 

  8. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. The MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  9. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progr. Mater. Sci., 1975, vol. 19, pp. 1–271.

    Article  Google Scholar 

  10. A.K. Zurek, P.S. Follansbee, and D. Kapoor: in High Strain Rate Behavior of Refractory Metals and Alloys, R. Asfahani, E. Chen, and A. Crowson, eds., TMS, Warrendale, PA, 1992 pp. 190–207.

    Google Scholar 

  11. S. Nemat-Nasser, and J.B. Isaacs: Acta Mater., 1997, vol. 45, pp. 907–19.

    Article  CAS  Google Scholar 

  12. S. Nemat-Nasser and Y. Li: Acta Mater., 1998, vol. 46, pp. 565–77.

    Article  CAS  Google Scholar 

  13. A.H. Cottrell and R.J. Stokes: Proc. R. Soc. A, 1955, vol. 233, pp. 17–34.

    Article  CAS  Google Scholar 

  14. Z.S. Basinski and J.W. Christian: Aus. J. Phys., 1960, vol. 13, pp. 299–308.

    CAS  Google Scholar 

  15. J. Klepaczko: Mater. Sci. Eng., 1975, vol. 18, pp. 121–35.

    Article  CAS  Google Scholar 

  16. J.R. Klepaczko and C.Y. Chiem: J. Mech. Phys. Solids, 1986, vol. 34, pp. 29–54.

    Article  Google Scholar 

  17. K.G. Hoge and A.K. Mukherjee: J. Mater. Sci., 1977, vol. 12, pp. 1666–72.

    Article  CAS  Google Scholar 

  18. M.A. Meyers, Y.J. Chen, F.D.S. Marquis, and D.S. Kim: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2493–2502.

    Article  CAS  Google Scholar 

  19. S.R. Chen, G.T. Gray III, and S.R. Bingert: in Tantalum. Proc. Symp. Head at 125th TMS Annual Meeting and Exhibition, E. Chen, A. Crowson, E. Lavernia, and W. Ebihara, eds., TMS, Warrendale, PA, 1996 pp. 173–84.

    Google Scholar 

  20. D.J. Steinberg, and C.M. Lund: J. Appl. Phys., 1989, vol. 65, pp. 1528–33.

    Article  CAS  Google Scholar 

  21. G.T. Gray III and K.S. Vecchio: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2555–64.

    Article  CAS  Google Scholar 

  22. C.M. Lopatin, C.L. Wittman, J.P. Swensen, and P.F. Perron: in High Strain Rate Behavior of Refractory Metals and Alloys, R. Asfahani, E. Chen, and A. Crowson, eds., TMS, Warrendale, PA, 1992 pp. 241–47.

    Google Scholar 

  23. R.M. Davies: Phil. Mag., 1948, vol. 240, pp. 375.

    Google Scholar 

  24. H. Kolsky: Proc. Phys. Soc. London, 1949, vol. 62, pp. 676–700.

    Article  Google Scholar 

  25. P.S. Follandsbee: Mechanical Testing, Metals Handbook, 9th ed., ASM, Metals Park, OH, 1985, vol. 8, p. 190.

    Google Scholar 

  26. S. Nemat-Nasser, J.B. Isaacs, and J. E. Starrett: Proc. R. Soc. London A, 1991, vol. 435, pp. 371–91.

    Article  Google Scholar 

  27. R. Kapoor, and S. Nemat-Nasser: Mech. Mater. 1998, vol. 27, pp. 1–12.

    Article  Google Scholar 

  28. S. Nemat-Nasser, Y. Li, and J.B. Isaacs: Mech. Mater., 1994, vol. 17, pp. 111–34.

    Article  Google Scholar 

  29. E. Nadgornyi: Progr. Mater. Sci., 1988, vol. 31, pp. 19–21 and 232–51.

    Article  Google Scholar 

  30. G. Regazzoni, U.F. Kocks, and P.S. Follansbee: Acta Metall., 1987, vol. 35, pp. 2865–75.

    Article  CAS  Google Scholar 

  31. G.Y. Chin, and W.L. Mammel: Trans. TMS-AIME, 1967, vol. 239, pp. 1400–05.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

was formerly with the Center of Excellence for Advanced Materials, University of California, San Diego.

This article is based on a presentation given in the symposium entitled “Dynamic Behavior of Materials—Part II,” held during the 1998 Fall TMS/ASM Meeting and Materials Week, October 11–15, 1998, in Rosemont, Illinois, under the auspices of the TMS Mechanical Metallurgy and the ASM Flow and Fracture Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, R., Nemat-Nasser, S. Comparison between high and low strain-rate deformation of tantalum. Metall Mater Trans A 31, 815–823 (2000). https://doi.org/10.1007/s11661-000-1001-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-1001-6

Keywords

Navigation