Skip to main content

Advertisement

Log in

Deformation and fracture of a particle-reinforced aluminum alloy composite: Part I. Experiments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mechanical tests were performed on a powder-metallurgically processed 7093/SiC/15p discontinuously reinforced aluminum (DRA) composite in different heat-treatment conditions, to determine the influence of matrix characteristics on the composite response. The work-hardening exponent and the strain to failure varied inversely to the strength, similar to monolithic Al alloys, and this dependence was independent of the dominant damage mode. The damage consisted of SiC particle cracks, interface and near-interface debonds, and matrix rupture inside intense slip bands. Fracture surfaces revealed particle fracture-dominated damage for most of the heat-treatment conditions, including an overaged (OA) condition that exhibited a combination of precipitates at the interface and a precipitate-free zone (PFZ) in the immediate vicinity. In the highly OA conditions and in a 450°C as-rolled condition, when the composite strength became less than 400 MPa, near-interface matrix rupture became dominant. A combination of a relatively weak matrix and a weak zone around the particle likely contributed to this damage mode over that of particle fracture. Fracture-toughness tests show that it is important to maintain a proper geometry and testing procedure to obtain valid fracture-toughness data. Overaged microstructures did reveal a recovery of fracture toughness as compared to the peak-aged (PA) condition, unlike the lack of toughness recovery reported earlier for a similar 7XXX (Al-Zn-Cu-Mg)—based DRA. The PA material exhibited extensive localization of damage and plasticity. The low toughness of the DRA in this PA condition is explored in detail, using fractography and metallography. The damage and fracture micromechanisms formed the basis for modeling the strength, elongation, toughness, and damage, which are described in Part II of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, pp. 1–23.

    CAS  Google Scholar 

  2. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, United Kingdom, 1993.

    Google Scholar 

  3. D.J. Lloyd: Acta Metall., 1991, vol. 39, pp. 59–71.

    Article  CAS  Google Scholar 

  4. D.L. Davidson: Metall. Trans. A, 1987, vol. 18A, pp. 2115–28.

    CAS  Google Scholar 

  5. T. Christman, A. Needleman, and S. Suresh: Acta Metall., 1989, vol. 37, pp. 3029–50.

    Article  CAS  Google Scholar 

  6. A. Mortenson: in Fabrication of Particulate Reinforced Metal Composites, J. Masounave and F. G. Hammel, eds., ASM, Materials Park, OH, 1990, pp. 217–33.

    Google Scholar 

  7. M. Manoharan and J.J. Lewandowski: Acta Metall., 1990, vol. 38, pp. 489–96.

    Article  CAS  Google Scholar 

  8. J.J. Lewandowski, C. Liu, and W.H. Hunt: Mater. Sci. Eng., 1989, vol. 107A, pp. 241–55.

    Google Scholar 

  9. J. Llorca, A. Martin, J. Ruiz, and M. Elices: Metall. Trans. A, 1993, vol. 24A, pp. 1575–88.

    CAS  Google Scholar 

  10. C.P. You, A.W. Thompson, and I.M. Bernstein: Scripta Metall., 1987, vol. 21, pp. 181–85.

    Article  CAS  Google Scholar 

  11. A.F. Whitehouse and T.W. Clyne: Acta Metall. Mater., 1995, vol. 43, pp. 2107–14.

    Article  CAS  Google Scholar 

  12. Y. Flom and R.J. Arsenault: Acta Metall, 1989, vol. 37, pp. 2413–23.

    Article  CAS  Google Scholar 

  13. T.F. Klimowicz and K.S. Vecchio: in Fundamental Relationships between Microstructure and Mechanical Properties of MMCs, P.K. Liaw and M.N. Gungor, eds., TMS, Warrendale, PA, 1989, pp. 255–300.

    Google Scholar 

  14. G.T. Hahn and A.R. Rosenfield: Metall. Trans. A, 1975, vol. 6A, pp. 653–70.

    CAS  Google Scholar 

  15. G.G. Garrett and J.F. Knott: Metall. Trans. A, 1978, vol. 9A, pp. 1187–1201.

    CAS  Google Scholar 

  16. J.R. Rice and M.A. Johnson: in Inelastic Behavior of Solids, M.F. Kaninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, eds., McGraw-Hill, New York, NY, Battelle Memorial Institute, Columbus, OH, 1969, pp. 641–72.

    Google Scholar 

  17. S.V. Kamat, J.P. Hirth, and R. Mehrabian: Acta Metall., 1989, vol. 37, pp. 2395–2402.

    Article  CAS  Google Scholar 

  18. G.T. Hahn and A.R. Rosenfield: Applications Related Phenomena in Titanium Alloys, ASTM STP 432, ASTM, Philadelphia, PA, 1968, pp. 5–32.

    Google Scholar 

  19. A.B. Pandey, B.S. Majumdar, and D.B. Miracle: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1237–43.

    Article  CAS  Google Scholar 

  20. J.J. Lewandowski, C. Liu, and W.H. Hunt, Jr.: in Processing and Properties of Powder Metallurgy Composites, P. Kumar, K. Vedula, and A. Ritter, eds., TMS-AIME, Warrendale, PA, 1988, p. 117.

    Google Scholar 

  21. ASTM Annual Book of Standards, ASTM Standard E-813, ASTM, Philadelphia, PA, 1987, p. 713.

  22. G. Green and J.F. Knott: J. Eng. Mater. Technol., ASME, 1976, Jan., pp. 37–46.

  23. J.Q. Clayton and J.F. Knott: Met. Sci., 1976, pp. 63–71.

  24. J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  25. D.L. Davidson: Metall. Trans. A, 1991, vol. 22A, pp. 113–23.

    CAS  Google Scholar 

  26. D.B. Zahl, S. Schmauder, and R.M. McMeeking: Acta Metall., 1994, vol. 42, pp. 2983–97.

    Article  Google Scholar 

  27. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  28. J.R. Brockenborough, S. Suresh, and W.A. Weinecke: Acta Metall., 1991, vol. 39, pp. 739–52.

    Article  Google Scholar 

  29. S. Ghosh, K. Lee, and S. Moorthy: Int. J. Solids Struct., 1995, vol. 32, pp. 27–62.

    Article  Google Scholar 

  30. S. Ghosh, K. Lee, and S. Moorthy: Comp. Methods Appl. Mech. Eng., 1996, vol. 132, pp. 63–116.

    Article  Google Scholar 

  31. S. Ghosh and S. Moorthy: Ohio State University, Columbus, OH, unpublished research, 1997.

  32. S. Moorthy and S. Ghosh: Int. J. Num. Methods Eng., 1996, vol. 39, pp. 2363–98.

    Article  Google Scholar 

  33. Y. Flom and R.J. Arsenault: Mater. Sci. Eng., 1986, vol. 77, pp. 191–97.

    Article  CAS  Google Scholar 

  34. J. Orr and D.K. Brown: Eng. Fract. Mech., 1974, vol. 6, pp. 261–74.

    Article  Google Scholar 

  35. R.F. Karlak, F.W. Crossman, and J.J. Grant: Failure Modes in Composites-II, AIME Symp. Proc., J.N. Fleck and R.L. Mehan, eds., TMS, Warrendale, PA, 1974, pp. 119–30.

    Google Scholar 

  36. A.S. Argon and J. Im: Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    CAS  Google Scholar 

  37. J. Tirosh, E. Katz, G. Lifschuetz, and A.S. Tetelman: Eng. Fract. Mech., 1979, vol. 12, pp. 267–77.

    Article  Google Scholar 

  38. J.R. Brockenborough, W.H. Hunt, and P.E. Magnusen: in Mechanisms and Mechanics of Composites Fracture, R.B. Bhagat, S.G. Fishman, and R.J. Arsenault, eds., ASM, Materials Park, OH, 1993, pp. 191–200.

    Google Scholar 

  39. R.J. Arsenault, N. Shi, C.R. Feng, and L. Wang: Mater. Sci. Eng., 1991, vol. 131A, pp. 55–68.

    Google Scholar 

  40. R.O. Ritchie and A.W. Thompson: Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  41. B.S. Majumdar, S.G. Warrier, and D.B. Miracle: MRS Symp. on Interfacial Engineering for Optimized Properties, C.L. Briant, E.L. Hall, and C.B. Carter, eds., Materials Research Society, Pittsburgh, PA, 1997, vol. 458, pp. 185–90.

    Google Scholar 

  42. B.S. Majumdar, T.E. Matikas, and D.B. Miracle: Composites: Part B, 1998, vol. 29B, pp. 131–45.

    Article  CAS  Google Scholar 

  43. A.K. Vasudevan, O. Richmond, F. Zok, and J.D. Embury: Mater. Sci. Eng., 1989, vol. 107A, pp. 63–69.

    Google Scholar 

  44. C.D. Beachem and G.R. Yoder: Metall. Trans. A, 1973, vol. 4A, pp. 1145–53.

    Google Scholar 

  45. K.V. Jata and E.A. Starke: Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the Symposium “Mechanisms and Mechanics of Composites Fracture” held October 11–15, 1998, at the TMS Fall Meeting in Rosemont, Illinois, under the auspices of the TMS-SMD/ASM-MSCTS Composite Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A.B., Majumdar, B.S. & Miracle, D.B. Deformation and fracture of a particle-reinforced aluminum alloy composite: Part I. Experiments. Metall Mater Trans A 31, 921–936 (2000). https://doi.org/10.1007/s11661-000-1011-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-1011-4

Keywords

Navigation