Skip to main content

Advertisement

Log in

Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The tensile behavior of Ti-Al-Nb alloys with Al concentrations between 12 and 26 at. pct and Nb concentrations between 22 and 38 at. pct has been investigated for temperatures between 25 °C and 650 °C. Several microstructural features were evaluated in an attempt to identify microstructure-property relationships. In particular, the effects of the phase volume fraction, composition, morphology, and grain size were examined. In addition, the constitutive properties were evaluated using single-phase microstructures, and the results provided insight into the microstructure-property relationships of the two-phase orthorhombic (O)+body-centered-cubic (bcc) microstructures. The disordered fully-bcc (β) Ti-12Al-38Nb microstructure, produced through heat treatment above the β-transus, exhibited a room-temperature (RT) elongation of more than 27 pct and the lowest yield strength (YS-553 MPa) of all the alloys studied. The ordered fully-bcc (B2) microstructures, produced through supertransus heat treatment of near-Ti2AlNb alloys, exhibited fracture strengths up to 672 MPa and low elongations-to-failure (ε f≤0.6 pct). Thus, increasing the Al content, which favors ordering of the bcc structure, significantly reduces the ductility of the bcc phase. Similar to the ordered B2 microstructure, the ordered fully-O Ti2AlNb microstructures exhibited intermediate RT strength (≤704 MPa) and ε f (≤1 pct). The O+bcc microstructures tended to exhibit strengths greater than both the fully-O and fully-bcc microstructures, and this was attributed to the finer grain sizes in the two-phase microstructures compared to their single-phase counterparts. A RT of 1125 MPa was measured for the finest-grained two-phase microstructure. The O+bcc microstructures containing greater bcc-phase volume fractions tended to exhibit greater elongations yet poorer elevated-temperature strengths. A higher Al content typically resulted in larger elevated-temperature strengths. For the Ti-12Al-38Nb bcc-dominated microstructures, fine O platelets, which precipitated during aging, provided significant strengthening and a reduction in ε f for the Ti-12Al-38Nb alloy. However, large RT elongations (ε f>12 pct) were maintained for aged Ti-12Al-38Nb microstructures, which contained 28 vol pct O phase. Morphology did not appear to play a dominant role, as fully-lath and fully-equiaxed two-phase microstructures containing the same phase volume fractions exhibited similar RT tensile properties. The slip and cracking observations provided evidence for the ductile and brittle characteristics of the single-phase microstructures, and the slip compatibility exhibited between the two phases is an important part of why O+bcc microstructures achieve attractive strengths and elongations. The YS vs temperature behavior is discussed in light of other Ti-alloy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Rowe, D.G. Konitzer, A.P. Woodfield, and J.C. Chesnutt: in High Temperature Ordered Intermetallic Alloys—IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 231, pp. 703–08.

    Google Scholar 

  2. R.G. Rowe: in Microstructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, 1991, Warrendale, PA, pp. 387–98.

    Google Scholar 

  3. R.G. Rowe: GE Report No. 93CRD030, Physical Metallurgy Laboratory, Schenectady, NY, 1993.

    Google Scholar 

  4. R.G. Rowe: Titanium ’92 Science and Technology, F.H. Froes and I. Caplan, TMS, Warrendale, PA, 1993, vol. 1, pp. 343–50.

    Google Scholar 

  5. A.K. Gogia, T.K. Nandy, K. Muraleedharan, and D. Banerjee: Mater. Sci. Eng., 1992, vol. A159, pp. 73–86.

    CAS  Google Scholar 

  6. R.G. Rowe and M. Larsen: in Titanium ’95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 364–71.

    Google Scholar 

  7. D. Banerjee, A.K. Gogia, T.K. Nandy, K. Muraleedharan, and R.S. Mishra: Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 19–33.

    Google Scholar 

  8. J.C. Chesnutt, R.A. Amato, C.M. Austin, R.L. Fleischer, M.F.X. Gigliotti, D.A. Hardwick, S.C. Huang, D.G. Konitzer, M.M. Lee, P.L. Martin, C.G. Rhodes, R.G. Rowe, G.K. Scarr, D.S. Shih, and P.A. Zomcik: Report No. WL-TR-91-4070, GE Aircraft Engines, Cincinnati, OH, 1993.

    Google Scholar 

  9. B.S. Majumdar, C.J. Boehlert, and D.B. Miracle: Proc. Orthorhombic Titanium Matrix Composites Workshop, Report No. WL-TR-95-4068, Wright-Patterson Air Force Base, OH, 1995, pp. 65–83.

    Google Scholar 

  10. B.S. Majumdar, C.J. Boehlert, A.K. Rai, and D.B. Miracle: in High Temperature Ordered Intermetallic Alloys—VI, J. Horton, I. Baker, S. Hanada, R.D. Noebe, and D.S. Schwartz, eds., Materials Research Society, Pittsburgh, PA, 1995, vol. 364, pp. 1259–65.

    Google Scholar 

  11. P.R. Smith, J.A. Graves, and C.G. Rhodes: Metall. Mater. Trans., 1994, vol. 25A, pp. 1267–83.

    CAS  Google Scholar 

  12. P.R. Smith, W.J. Porter, W.J. Kralik, and J.A. Graves: Report No. WL-TR-95-4068, Wright-Patterson Air Force Base, OH, 1994, pp. 371–85.

    Google Scholar 

  13. P.R. Smith, W.J. Porter, W.J. Kralik, and J.A. Graves: Metal Matrix Composites, A. Poursartip and K.N. Street, eds., Woodhead Publishing, Ltd., Cambridge, United Kingdom, 1995, vol. 2, pp. 731–38.

    Google Scholar 

  14. F. Popille and J. Douin: Phil. Mag., 1996, vol. 73, pp. 1401–18.

    CAS  Google Scholar 

  15. A.P. Woodfield: Progress Report No. 5, GE Aircraft Engines, Cincinnati, OH, 1996.

    Google Scholar 

  16. F.C. Dary and T.M. Pollock: Mater. Sci. Eng., 1996, vol. A208 (2), p. 188.

    CAS  Google Scholar 

  17. F.C. Dary, S.R. Woodard, and T.M. Pollock: in Titanium ’95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 396–403.

    Google Scholar 

  18. S. Emura, J. Liu, M. Hagiwara, Y. Kawabe, and A. Okada: in Titanium ’95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 404–10.

    Google Scholar 

  19. M. Thomas, S. Naka, and T. Khan: in Titanium ’95, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The University Press, Cambridge, United Kingdom, 1996, vol. 1, pp. 388–95.

    Google Scholar 

  20. F. Popille-Puissochet, A. Courret, and J. Douin: Titanium ’96 Science and Technology, TMS, Warrendale, PA, 1997, pp. 380–87.

    Google Scholar 

  21. C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy, and D.B. Miracle: Metall. Mater. Trans., 1997, vol. 28A, pp. 309–23.

    CAS  Google Scholar 

  22. C.J. Boehlert, B.S. Majumdar, and D. Eylon: Key Eng. Mater., 1997, vols. 127–131, part I, pp. 843–50.

    Article  Google Scholar 

  23. C.J. Boehlert, B.S. Majumdar, and V. Seetharaman: Deformation and Fracture of Ordered Intermetallic Materials, W.O. Soboyejo, H.L. Fraser, and T.S. Srivatsan, eds., The Metallurgical Society, Warrendale, PA, 1997, 565–82.

    Google Scholar 

  24. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle: Report No. AFTR WL-TR-97-4082, P.R. Smith, ed., Air Force Research Laboratory, Dayton, OH, 1997, pp. 212–27.

    Google Scholar 

  25. A.K. Gogia, T.K. Nandy, D. Banerjee, T. Carisey, J.L. Strudel, and J.M. Franchet: Intermetallics, 1998, vol. 6, pp. 741–48.

    Article  CAS  Google Scholar 

  26. F. Chu, T.E. Mitchell, B.S. Majumdar, D.B. Miracle, T.K. Nandy, and D. Banerjee: Intermetallics, 1997, vol. 5, pp. 147–56.

    Article  CAS  Google Scholar 

  27. D. Banerjee: Phil. Mag., 1995, vol. 72 (6), pp. 1159–87.

    Google Scholar 

  28. D. Banerjee, R.G. Rowe, and E.L. Hall: in High Temperature Ordered Intermetallic Alloys—IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 285–90.

    Google Scholar 

  29. D. Banerjee and R.G. Rowe: in Titanium ’92 Science and Technology F.H. Froes and I. Caplan, eds., TMS, Warrendale, PA, pp. 1147–53.

  30. D. Banerjee, A.K. Gogia, and T.K. Nandy: Metall. Trans., 1990, vol. 21A, pp. 627–39.

    CAS  Google Scholar 

  31. A.S. Akkurt: Master’s Thesis, New Mexico Institute of Mining and Technology, Socorro, NM.

  32. C.M. Austin, J.R. Dobbs, H.L. Fraser, D.G. Konitzer, D.J. Miller, M.J. Parks, J.C. Schaeffer, and J.W. Sears: Report No. WL-TR-93-4059, GE Aircraft Engines, Cincinnati, OH, 1992.

    Google Scholar 

  33. J.H. Peng, Y. Mao, S.Q. Li, and X.F. Sun: Trans. Nonferrous Met. Soc. China, 2000, vol. 10 (3), pp. 378–81.

    CAS  Google Scholar 

  34. C.J. Boehlert, B.S. Majumdar, V. Seetharaman, and D.B. Miracle: Metall. Mater. Trans., 1999, vol. 30A, pp. 2305–23.

    CAS  Google Scholar 

  35. C.J. Boehlert and D.B. Miracle: Metall. Mater. Trans., 1999, vol. 30A, pp. 2349–67.

    CAS  Google Scholar 

  36. C.J. Boehlert: Mater. Sci. Eng., 2000, vol. A279 (1–2), pp. 118–29.

    CAS  Google Scholar 

  37. C.J. Boehlert and J.F. Bingert: J. Mater. Processing Technol., in press.

  38. A.S. Akkurt, G. Liu, and G.M. Bond: in High-Temperature Ordered Intermetallic Alloys IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, vol. 213, pp. 455–60.

    Google Scholar 

  39. R. Wheeler, S. Perungulam, S. Banerjee, D.H. Hou, R.J. Grylls, and H.L. Fraser: Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 851–58.

    Google Scholar 

  40. A.G. Evans, J.W. Hutchinson, and R.M. McMeeking: Scripta Metall., 1991, vol. 25, pp. 3–8.

    Article  CAS  Google Scholar 

  41. G. Bao, J.W. Hutchinson, and R.M. McMeeking: Acta Metall. Mater., 1991, vol. 39(8), pp. 1871–82.

    Article  Google Scholar 

  42. L.C. Davis and J.E. Allison: Metall. Mater. Trans., 1995, vol. 26A, pp. 3081–90.

    CAS  Google Scholar 

  43. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, NY, 1976.

    Google Scholar 

  44. D.B. Miracle: Acta Metall., 1993, vol. 41(3), pp. 649–84.

    Article  CAS  Google Scholar 

  45. D. Banerjee: Intermetallic Compounds Principles and Practice, 1994, J.H. Westbrook and R.L. Fleischer, eds., John Wiley & Sons Ltd., New York, NY, vol. 2, pp. 91–131.

    Google Scholar 

  46. C.C. Wojcik, R. Roessler, and R. Zordan: in Advances in the Science and Technology of Titanium Alloy Processing, I. Weiss, P. Bania, and D. Eylon, eds., The Metallurgical Society, Warrendale, PA, 1996.

    Google Scholar 

  47. Y. Mao, S.Q. Li, J.W. Zhang, J.H. Peng, D.X. Zou, and Z.Y. Zhong: Intermetallics, 2000, vol. 8 (5–6), pp. 659–62.

    Article  CAS  Google Scholar 

  48. F. Tang, S. Emura, and M. Hasiwara: Scripta. Metall., 2001, vol. 44, pp. 671–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehlert, C.J. Part III. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys. Metall Mater Trans A 32, 1977–1988 (2001). https://doi.org/10.1007/s11661-001-0010-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0010-4

Keywords

Navigation