Skip to main content
Log in

Optimizing continuous annealing of interstitial-free steels for improving deep drawability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The crystallographic textures and the resulting plastic anisotropy of five interstitial-free (IF) steels with different carbon equivalents and Nb and Ti microalloying content have been investigated. The steels were industrially hot rolled, cold rolled, annealed, and finally hot-dip galvanized. An alternative heat treatment of the cold rolled samples was conducted in laboratory scale using parameters close to those in industry-scale continuous annealing lines. The anisotropy parameters were both measured and predicted on the basis of the measured texture data. The calculated \(\bar r\) values were corrected by using functions that were fitted to the experimental data. It was found that for a given hot and cold rolling state even minor changes in the annealing conditions can improve the anisotropy parameter \(\bar r\) by up to 13 pct. Increase in recrystallization texture and improvement of the resulting anisotropy parameters are discussed in terms of partial transformation of ferrite to austenite in the intercritical regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.I. Taylor: J. Inst. Met., 1938, vol. 62 (1), pp. 307–24.

    Google Scholar 

  2. J.F.W. Bishop and R. Hill: Phil. Mag., 1951, vol. 42 (327), pp. 414–27.

    CAS  Google Scholar 

  3. H.J. Bunge: Krist. Technik., 1970, vol. 5, pp. 145–56.

    CAS  Google Scholar 

  4. D. Raabe: Comput. Mater. Sci., 2000, vol. 19, pp. 13–26.

    Article  CAS  Google Scholar 

  5. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, (1), pp. 25–42.

    CAS  Google Scholar 

  6. H.J. Bunge: Theoretical Methods of Texture Analysis, DGM Informationsgesellschaft, Deutsche Gesellschaft für Metallkunde, Frankfurt, Germany, 1987.

    Google Scholar 

  7. M. Hölscher, D. Raabe, and K. Lücke: Steel Res., 1991, vol. 62 (12), pp. 567–75.

    Google Scholar 

  8. U.F. Kocks, C.N. Tomé, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  9. S. Mishra, C. Därmann, and K. Lücke: Acta Metall., 1984, vol. 32 (12), pp. 2185–2201.

    Article  CAS  Google Scholar 

  10. U.V. Schlippenbach, F. Emren, and K. Lücke: Acta Metall., 1986, vol. 34 (7), pp. 1289–1301.

    Article  Google Scholar 

  11. M. Hölscher, C. Raabe, and K. Lücke: Acta Metall., 1994, vol. 42 (3), pp. 879–86.

    Article  Google Scholar 

  12. H. Honneff and H. Mecking: Proc. ICOTOM ISII, Tokyo, 1981, vol. 6, pp. 347–52.

    Google Scholar 

  13. J.L. Raphanel and P. van Houtte: Acta Metall., 1985, vol. 33 (8), pp. 1481–88.

    Article  CAS  Google Scholar 

  14. D. Raabe: Mater. Sci. Technol., 1995, vol. 11 (5), pp. 455–60.

    CAS  Google Scholar 

  15. D. Vanderschueren, L. Kestens, P. van Houtte, E. Aernoudt, J. Dilewijns, and U. Meers: Mater. Sci. Technol., 1990, vol. 6 (12), pp. 1247–50.

    CAS  Google Scholar 

  16. D. Raabe: Mater. Sci. Eng., 1995, vol. A197 (1), pp. 31–37.

    CAS  Google Scholar 

  17. L. Tóth, A. Molinari, and D. Raabe: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2343–51.

    Google Scholar 

  18. W.B. Hutchinson and K. Ushioda: Scand. J. Metall. 1984, vol. 13, pp. 269–84.

    CAS  Google Scholar 

  19. W.B. Hutchinson: Acta Metall., 1989, vol. 37 (4), pp. 1047–56.

    Article  CAS  Google Scholar 

  20. D. Raabe and K. Lücke: Scripta Metall., 1992, vol. 26 (1), pp. 19–24.

    Article  CAS  Google Scholar 

  21. D. Raabe and K. Lücke: Steel Res., 1992, vol. 63 (10), pp. 457–64.

    CAS  Google Scholar 

  22. Y.B. Park, D.N. Lee, and G. Gottstein: Acta Mater., 1996, vol. 44 (8), pp. 3421–27.

    Article  CAS  Google Scholar 

  23. U. Köhler and H.J. Bunge: Text Microstr., 1995, vol. 23, pp. 87–96.

    Google Scholar 

  24. B. Samajdar, B. Verlinden, and P. van Houtte: Acta Mater., 1998, vol. 46 (8), pp. 2751–63.

    Article  CAS  Google Scholar 

  25. Y. Hayakawa and J.A. Szpunar: Acta Mater., 1997, vol. 45 (9), pp. 3721–30.

    Article  CAS  Google Scholar 

  26. L. Kestens and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A (1), pp. 155–64.

    CAS  Google Scholar 

  27. D. Vanderschueren, N. Yoshinaga, and K. Koyama: Iron Steel Inst. Jpn. Int., 1996, vol. 36 (8), pp. 1046–54.

    CAS  Google Scholar 

  28. C. Klinkenberg, D. Raabe, and K. Lücke: Steel Res., 1992, vol. 63 (6), pp. 263–69.

    CAS  Google Scholar 

  29. C. Klinkenberg, D. Raabe, and K. Lücke; Steel Res., 1993, vol. 64 (5), pp. 262–66.

    CAS  Google Scholar 

  30. L.G. Schulz: J. Appl. Phys., 1949, vol. 20 (11), pp. 1030–36.

    Article  Google Scholar 

  31. H.J. Bunge: Z. Metallk., 1965, vol. 56 (12), pp. 872–74.

    CAS  Google Scholar 

  32. D. Raabe and K. Lücke: Mater. Sci. Forum, 1994, vols. 157–162, pp. 597–610.

    Google Scholar 

  33. D. Raabe: Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 1992.

    Google Scholar 

  34. D. Raabe and K. Lücke: Scripta Metall., 1992, vol. 26 (8), pp. 1221–26.

    Article  CAS  Google Scholar 

  35. D. Raabe and K. Lücke: Proc. Int. Conf. on Strip Casting, Hot and Cold Working of Stainless Steels, PQ, Montreal, Canada, 1993, N.D. Ryan, A.J. Brown, and H.J. McQueen, eds., TMS-CIM, Canada, 1993, pp. 221–35.

    Google Scholar 

  36. A. Fedosseev, D. Raabe, and G. Gottstein: Mater. Sci. Forum, 1994, vols. 157–162, pp. 1771–76.

    Article  Google Scholar 

  37. A. Fedosseev and D. Raabe: Scripta Metall., 1994, vol. 30 (1), pp. 1–6.

    Article  CAS  Google Scholar 

  38. D. Raabe and K. Lücke: Proc. 4th Eur. Conf. on Advanced Materials and Processes, Euromat 95, Padua/Venice, Italy, Sept. 25–28, 1995, Symp. F—Materials and Processing Control, Associatione Italiana di Metallurgia, Milano, Italy, 1995, vol. 32 pp. 285–88.

    Google Scholar 

  39. D. Raabe: J. Mater. Sci., 1995, vol. 30 (1), pp. 47–52.

    Article  CAS  Google Scholar 

  40. D. Raabe: Metall. Mater. Trans. A, 1995, vol. 26A (4), pp. 991–98.

    CAS  Google Scholar 

  41. D. Raabe: Mater. Sci. Technol., 1995, vol. 11 (5), pp. 461–68.

    CAS  Google Scholar 

  42. D. Raabe: Physica Status Solidi A, 1995, vol. 149, pp. 575–81.

    Article  CAS  Google Scholar 

  43. D. Raabe, F. Roters, and V. Marx: Textures Microstr., 1996, vols. 26–27, pp. 611–35.

    Article  Google Scholar 

  44. D. Raabe: Steel Res. 1995, vol. 66 (5), pp. 222–29.

    CAS  Google Scholar 

  45. N. Yurioka and T. Kasuya: Welding World, 1995, vol. 35 (5), pp. 327–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juntunen, P., Karjalainen, P., Raabe, D. et al. Optimizing continuous annealing of interstitial-free steels for improving deep drawability. Metall Mater Trans A 32, 1989–1995 (2001). https://doi.org/10.1007/s11661-001-0011-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0011-3

Keywords

Navigation