Skip to main content
Log in

Phase transformations in Ti-6Al-4V-xH alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructures, phases, and phase transformations in Ti-6Al-4V alloy specimens containing 0, 10, 20, and 30 at. pct hydrogen were investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and microhardness testing. Alloying with hydrogen was achieved by holding the specimens in a pure hydrogen atmosphere of different pressures at 780 °C for 24 hours. The phases present in the temperature range of 20 °C to 1000 °C were determined by microstructural characterization of the specimens quenched from different temperatures. Increasing the hydrogen addition from 0 to 30 at. pct lowered the beta-transus temperature of the alloy from 1005 °C to 815 °C, significantly slowed down the kinetics of the beta-to-alpha transformation, and led to formation of an orthorhombic martensite instead of the hexagonal martensite found in quenched specimens containing 0 pct H. A hydride phase was detected in specimens containing 20 and 30 at. pct hydrogen. The time-temperature-transformation (TTT) diagrams for beta-phase decomposition were determined at different hydrogen concentrations. The nose temperature for the beginning of the transformation decreased from 725 °C to 580 °C, and the nose time increased from 12 seconds to 42 minutes when the hydrogen concentration was increased from 0 to 30 at. pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.N. Senkov and F.H. Froes: Int. J. Hydrogen Energy, 1999, vol. 24, pp. 565–76.

    Article  CAS  Google Scholar 

  2. O.N. Senkov, J.J. Jonas, and F.H. Froes: JOM, 1996, vol. 48, No. 7, pp. 42–47.

    CAS  Google Scholar 

  3. D. Eylon and F.H. Fores: Patent No. 4,482,398, Nov. 1984.

  4. D. Eylon, F.H. Fores, and C.F. Yolton: Patent No. 4,820,360, Apr. 1989.

  5. D. Eylon, F.H. Froes, and C.F. Yolton: Patent No. 4,872,927, Oct. 1989.

  6. L. Levin, R.G. Vogt, D. Eylon, and F.H. Fores: Patent No. 4,612,066, Sept. 1986.

  7. R.G. Vogt, D. Eylon, and F.H. Froes: Patent No. 4,680,063, July 1987.

  8. L. Levin, R.G. Vogt, D. Eylon, and F.H. Froes: Patent No. 4,655,855, Apr. 1987.

  9. R.J. Smickley and L.E. Dardi: Patent No. 4,505,764, Mar. 1985.

  10. W.R. Kerr, P.R. Smith, M.E. Rosenblum, F.J. Gurney, Y.R. Mahajan, and L.R. Bidwell: in Titanium 80: Science & Technology, H. Kimura and O. Izumi, eds., TMS, Warrendale, PA, 1980, vol. 4, pp. 2477–86.

    Google Scholar 

  11. M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, and O. Toriyama: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1141–51.

    CAS  Google Scholar 

  12. A.A. Ilyn, B.A. Kolachev, and A.M. Mamonov in Titanium 92: Science & Technology, F.H. Froes and I. Caplan eds., TMS, Warrendale, PA, pp. 941–47.

  13. T.Y. Fang and W.H. Wang: Mater. Chem. Phys., 1998, vol. 56, pp. 35–47.

    Article  CAS  Google Scholar 

  14. I. Grimberg, L. Levin, O. Botstein, and F.H. Froes: J. Mater. Res., 1991, vol. 6, pp. 2069–76.

    CAS  Google Scholar 

  15. H. Yoshimura and M. Hayashi: Nippon Steel Technical Report, 1994, vol. 62, pp. 80–84.

    Google Scholar 

  16. D. Eliezer, N. Eliaz, O.N. Senkov, and F.H. Froes: Mater. Sci. Eng., 2000, vol. A280, pp. 220–24.

    CAS  Google Scholar 

  17. B. Gong, Z. Lai, M. Niinomi, and T. Kobayashi: Acta Metall. Sinica A, 1993, vol. 6, pp. 121–24.

    Google Scholar 

  18. O.N. Senkov and J.J. Jonas: Metall. Trans. A, 1996, vol. 27A, pp. 1877–87.

    CAS  Google Scholar 

  19. F.H. Froes, D. Eylon, and C. Suryanarayana: JOM, 1990, vol. 42, pp. 26–29.

    CAS  Google Scholar 

  20. H. Yoshimura, K. Kimura, M. Hayashi, M. Ishii, T. Hanamura, and J. Takamura: Mater. Trans. A, JIM, 1994, vol. 35, pp. 266–72.

    Google Scholar 

  21. B. Gong, C.B. Zhang, and Z.H. Lai: J. Mat. Sci. Lett., 1994, vol. 13, pp. 1561–63.

    Article  CAS  Google Scholar 

  22. U. Zwicker and H.W. Schleicher: Patent No. 2,892,742, June 1959.

  23. A. San-Martin and F.D. Manchester: in Phase Diagrams of Binary Titanium Alloys, J.L. Murray, ed., ASM INTERNATIONAL, Materials Park, OH, 1987, pp. 123–25.

    Google Scholar 

  24. O.N. Senkov and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1869–76.

    CAS  Google Scholar 

  25. M.J. Blackburn and J.C. Williams: Trans. AIME, 1967, vol. 239, p. 287.

    CAS  Google Scholar 

  26. J.D. Boyd: Trans ASM, 1969, vol. 62, pp. 977–988.

    CAS  Google Scholar 

  27. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 490–91.

    Google Scholar 

  28. I.J. Polmear: Light Alloys: Metallurgy of the Light Metals, 3rd ed., John Wiley and Sons, Inc., New York, NY, 1995, p. 274.

    Google Scholar 

  29. F.X.G. Mur, D. Rodriguez, and J.A. Planelli: J. Alloy Compounds, 1996, vol. 234, pp. 87–89.

    Google Scholar 

  30. C.F. Yolton, F.H. Froes, and R.F. Malone: Metall. Trans. A, 1979, vol. 10A, pp. 132–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qazi, J.I., Rahim, J., (SAM) Fores, F.H. et al. Phase transformations in Ti-6Al-4V-xH alloys. Metall Mater Trans A 32, 2453–2463 (2001). https://doi.org/10.1007/s11661-001-0035-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0035-8

Keywords

Navigation