Skip to main content

Advertisement

Log in

Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents a study of fatigue-crack propagation behavior in Nitinol, a 50Ni-50Ti (at. pct) superelastic/shape-memory alloy, with particular emphasis on the effect of the stress-induced martensitic transformation on crack-growth resistance. Specifically, fatigue-crack growth was characterized in stable austenite (at 120 °C), superelastic austenite (at 37 °C), and martensite (at −65 °C and − 196 °C). In general, fatigue-crack growth resistance was found to increase with decreasing temperature, such that fatigue thresholds were higher and crack-growth rates slower in martensite compared to stable austenite and superelastic austenite. Of note was the observation that the stress-induced transformation of the superelastic austenite structure, which occurs readily at 37 °C during uniaxial tensile testing, could be suppressed during fatigue-crack propagation by the tensile hydrostatic stress state ahead of a crack tip in plane strain; this effect, however, was not seen in thinner specimens, where the constraint was relaxed due to prevailing plane-stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Melton and O. Mercier: Acta Metall., 1979, vol. 27, pp. 137–44.

    Article  CAS  Google Scholar 

  2. S. Miyazaki, M. Suizu, K. Otsuka, and T. Takashima: Shape Memory Materials, Proc. MRS Int. Meeting on Advanced Materials, K. Otsuka and K. Shimizu, eds., Materials Research Society, Pittsburgh, PA, 1989, vol. 9, pp. 263–8.

    Google Scholar 

  3. R.H. Dauskardt, T.W. Duerig, and R.O. Ritchie: Shape Memory Materials, Proc. MRS Int. Meeting on Advanced Materials, K. Otsuka and K. Shimizu, eds., Materials Research Society, Pittsburgh, PA, 1989, vol. 9, pp. 243–49.

    Google Scholar 

  4. W. Elber: Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  5. R.O. Ritchie and W. Yu: in Small Fatigue Cracks, R.O. Ritchie and J. Lankford eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  6. G.M. Michal: Ph.D. Thesis, Stanford University, Palo Alto, CA, 1979.

    Google Scholar 

  7. E. Goo and R. Sinclair: Acta Metall., 1985, vol. 33, pp. 1717–23.

    Article  CAS  Google Scholar 

  8. G.M. Michal and R. Sinclair: Acta Cryst. B, 1981, vol. 37, pp. 1803–07.

    Article  Google Scholar 

  9. A.S. Savvinov, V.P. Sivokha, and V.N. Khachin: Phys. Met., 1985, vol. 5, pp. 1107–18.

    Google Scholar 

  10. T. Saburi and C.M. Wayman: Acta Metall., 1979, vol. 27, pp. 979–95.

    Article  CAS  Google Scholar 

  11. J.Y. Hwang and C.F. Yang: Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems, Materials Research Society, Symposia Proceedings, A.P. Jardine, G.C. Johnson, A. Crowson, and M. Allen, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 276, pp. 183–88.

    Google Scholar 

  12. A.L. McKelvey and R.O. Ritchie: Phil. Mag. A, 2000, vol. 80, pp. 1759–68.

    Article  CAS  Google Scholar 

  13. C.M. Wayman and T.W. Duerig: in Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stockel, and C.M. Wayman, eds., Butterworth Heinemann, London, 1990, pp. 3–17.

    Google Scholar 

  14. T.W. Duerig and R. Zadno: in Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stockel, and C.M. Wayman, eds., Butterworth Heinemann, London, 1990, pp. 369–83.

    Google Scholar 

  15. R.A. Schmidt and P.C. Paris: Progress in Flaw Growth and Fracture Testing, ASTM STP 536, ASTM, Philadelphia, PA, 1973, pp. 79–94.

    Google Scholar 

  16. R.O. Ritchie and J.F. Knott: Acta Metall., 1973, vol. 21, pp. 639–48.

    Article  CAS  Google Scholar 

  17. C.J. Gilbert, R.H. Dauskardt, and R.O. Ritchie: J. Am. Ceram. Soc., 1995, vol. 78, pp. 2291–2300.

    Article  CAS  Google Scholar 

  18. R.H. Dauskardt, M.R. James, J.R. Porter, and R.O. Ritchie: J. Am. Ceram. Soc., 1992, vol. 75, pp. 759–71.

    Article  CAS  Google Scholar 

  19. R.O. Ritchie: Int. J. Fract., 1999, vol. 100, pp. 55–83.

    Article  CAS  Google Scholar 

  20. J.P. Campbell, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 563–77.

    Article  CAS  Google Scholar 

  21. K. Badrinarayanan, A.L. McKelvey, K.T. Venkateswara Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3781–92.

    Article  CAS  Google Scholar 

  22. R.O. Ritchie: Mater. Sci. Eng. A, 1988, vol. 103, pp. 15–28.

    Article  Google Scholar 

  23. Z. Mei and J.W. Morris Jr.: Metall. Trans. A, 1990, vol. 21A, pp. 3137–52.

    CAS  Google Scholar 

  24. S. Suresh: Fatigue of Materials, Cambridge University Press, New York, NY, 1991, p. 586.

    Google Scholar 

  25. E. Tschegg and S. Stanzl: Acta Metall., 1981, vol. 29, pp. 33–40.

    Article  CAS  Google Scholar 

  26. A.L. McKelvey: Ph.D. Thesis, University of California, Berkeley, CA, 1999.

    Google Scholar 

  27. B.D. Cullity: Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Company, Inc., Reading, MA, 1978.

    Google Scholar 

  28. D.P. Clausing: J. Mater., 1969, vol. 4, pp. 566–82.

    Google Scholar 

  29. D.P. Clausing: Int. J. Fract. Mech., 1970, vol. 6, pp. 71–85.

    Google Scholar 

  30. J.W. Hancock and A.C. Mackenzie: J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  31. A.C. Mackenzie, J.W. Hancock, and D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  32. P.W. Bridgeman: Studies in Large Flow and Fracture, McGraw-Hill, New York, NY, 1952.

    Google Scholar 

  33. J.R. Rice and M.A. Johnson: in Inelastic Behavior of Solids, M.F. Kanninen, ed., McGraw-Hill, New York, NY, 1970, pp. 641–72.

    Google Scholar 

  34. A.L. McKelvey and R.O. Ritchie: J. Biomed. Mater. Res., 1999, vol. 47, pp. 301–08.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKelvey, A.L., Ritchie, R.O. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall Mater Trans A 32, 731–743 (2001). https://doi.org/10.1007/s11661-001-0089-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0089-7

Keywords

Navigation