Skip to main content
Log in

Alloying mechanism of beta stabilizers in a TiAl alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of beta stabilizers such as Fe, Cr, V, and Nb on the microstructures and phase constituents of Ti52Al48-xM (x=0, 1.0, 2.0, 4.0, or 6.0 at. pct and M=Fe, Cr, V, and Nb) alloys were studied. The dependence of the tensile properties and creep resistance of TiAl on the alloying elements, especially the formation of B2 phase, was investigated. Fe is the strongest B2 stabilizer, Cr is second, V is an intermediate stabilizer, and Nb is the weakest stabilizer. The composition partitioning of Fe, Cr, V, and Nb in the γ phase is affected by the formation of B2 phase. The peaks of the tensile strengths and creep rupture life of Ti52Al48-xM generally occur at the maximum solid solution of these elements in the γ phase, which is just before the formation of B2 phase. Ti52Al48-0.5Fe shows an attractive elongation of 2.5 pct at room temperature, and the Ti52Al48-1V, Ti52Al48-Cr, and Ti52Al48-2Nb alloys have about 1.1 to 1.3 pct elongation at room temperature. The increase of tensile strengths and creep resistance with increasing Fe, Cr, V, and Nb contents is chiefly attributed to the solid-solution strengthening of these elements in the γ phase. The appearance of B2 phase deteriorates the creep resistance, room-temperature strengths, and ductility. With respect to the maximum solid-solution strengthening, an empirical equation of the Cr equivalent [Cr] is suggested as follows: [Cr]=Cr+Mn+3/5V+3/8Nb+3/2 (W+Mo)+3Fe=1.5 to 3.0. The solid-solution strengthening mechanism of Fe, Cr, V, and Nb at room temperature arises from the increase of the Ti 3s and Al 2s binding energies in Ti-Ti and Al-Al bonds, and the retention of the strength and creep resistance at elevated temperatures in Ti52Al48-xM is mainly attributed to the increase of the Ti 3s and Al 2s binding energies in Ti-Al bonds in γ phase. The decrease of the Ti 3p and Al 2p binding energies in Ti-Ti, Ti-Al, and Al-Al bonds benefits the ductility of TiAl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.-W. Kim: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 637–54.

    Google Scholar 

  2. D.M. Dimiduk: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 3–20.

    Google Scholar 

  3. M. Yamaguchi and H. Inui: in Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 299–307.

    Google Scholar 

  4. C.M. Austin and T.J. Kelly: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 21–32.

    Google Scholar 

  5. Y.-W. Kim: Acta Metall. Mater., 1992, vol. 40, pp. 1121–34.

    Article  CAS  Google Scholar 

  6. Y.-W. Kim: JOM, 1994, vol. 46, pp. 30–40.

    CAS  Google Scholar 

  7. Y.-W. Kim and D.M. Dimiduk: JOM, 1991, vol. 43, pp. 21–32.

    Google Scholar 

  8. S.-C. Huang and D.S. Shih: in Microstructure/Property Relationships in Titanium Aluminides and Titanium Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 105–22.

    Google Scholar 

  9. K.S. Chan: Metall. Trans. A, 1993, vol. 24A, pp. 569–83.

    CAS  Google Scholar 

  10. K.S. Chan and Y.-W. Kim: Metall. Trans. A, 1993, vol. 24A, pp. 113–25.

    CAS  Google Scholar 

  11. M.G. Mendiratta, R.L. Goetz, and D.M. Dimiduk: Metall. Mater. Trans. A, 1996, vol. 27, pp. 3903–12.

    Article  Google Scholar 

  12. G. Malakondaiah and T. Nicholas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2239–51.

    CAS  Google Scholar 

  13. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 79–90.

    CAS  Google Scholar 

  14. P.D. Grofts, P. Bowen, and I.P. Jones: Scripta Mater., 1996, vol. 35, pp. 1391–96.

    Article  Google Scholar 

  15. B.D. Worth, J.W. Jones, and J.E. Allison: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 931–38.

    Google Scholar 

  16. K. Maki, M. Shioda, and M. Sayashi: Mater. Sci. Eng., 1992, vol. A153, pp. 591–96.

    CAS  Google Scholar 

  17. S. Tsuyama, S. Mitao, and K. Minakawa: Mater. Sci. Eng., 1992, vol. A153, pp. 451–56.

    CAS  Google Scholar 

  18. M. Es-Souni, R. Wagner, P.A. Beaven, and A. Bartels: Mater. Sci. Eng., 1992, vol. A153, pp. 444–50.

    CAS  Google Scholar 

  19. Z.J. Pu and K.H. Wu: Scripta Mater., 1996, vol. 34, pp. 169–74.

    Article  CAS  Google Scholar 

  20. S.C. Huang and E.L. Hall: Metall. Trans. A, 1991, vol. 22A, pp. 2619–27.

    CAS  Google Scholar 

  21. S.C. Huang and E.L. Hall: Acta Metall. Mater., 1991, vol. 39, pp. 1053–60.

    Article  CAS  Google Scholar 

  22. H. Doi, K. Hashimoto, K. Kasahara, and T. Tsujimoto: Mater. Trans. JIM, 1990, vol. 31, pp. 975–82.

    Google Scholar 

  23. T. Tsujimoto and K. Hashimoto: Mater. Res. Soc. Symp. Proc., 1989, vol. 133, pp. 391–96.

    Google Scholar 

  24. T. Hanamura and M. Tanino: J. Mater. Sci. Lett., 1989, vol. 8, pp. 24–28.

    Article  CAS  Google Scholar 

  25. T. Hanamura, R. Uemori, and M. Tanino: J. Mater. Sci. Lett., 1989, vol. 8, pp. 1239–40.

    Article  CAS  Google Scholar 

  26. Y.G. Li and M.H. Loretto: Acta Metall. Mater., 1994, vol. 42, pp. 2913–19.

    Article  CAS  Google Scholar 

  27. S. Das, J.M. Howe, and J.H. Perepezko: Metall. Mater. Trans A, 1996, vol. 27A, pp. 1618–29.

    Google Scholar 

  28. Y.G. Nakagawa, S. Yokoshima, and K. Mastuda: Mater. Sci. Eng., 1992, vol. A153, pp. 722–25.

    CAS  Google Scholar 

  29. B.J. Inkson, C.B. Boothroyd, and C.J. Humphreys: Acta Metall. Mater., 1993, vol. 41, pp. 2867–76.

    Article  CAS  Google Scholar 

  30. G. Shao, P. Tsakiroroulos, and A.P. Miodownik: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 173–80.

    Google Scholar 

  31. F.H. Froes, C. Suryanarayana, and D. Eliezer: J. Mater. Sci., 1992, vol. 27, pp. 5113–40.

    Article  CAS  Google Scholar 

  32. M.A. Morris and Y.G. Li: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 353–60.

    Google Scholar 

  33. T. Tetsui: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 603–60.

    Google Scholar 

  34. J. Beddoes, L. Zhao, J. Triantafillou, P. Au, and W. Wallace: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 959–67.

    Google Scholar 

  35. P.R. Bhowal, W.A. Konkel, and H.F. Merrick: in Gamma Titanium Aluminides, Y.-W. Kim, R. Wagner, and M. Yamaguchi, eds., TMS, Las Vegas, NV, 1995, pp. 787–94.

    Google Scholar 

  36. H.W. Rosenberg: The Science Technology and Application of Titanium, Pergamon Press, New York, NY, 1970, p. 851.

    Google Scholar 

  37. O.P. Solonina and V.P. Kuraeva: in Titanium Science and Technology, R.I. Jaffee and H.M. Burte. eds., AIME, Cambridge, MA, 1972, pp. 2151–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, FS., Cao, CX., Yan, MG. et al. Alloying mechanism of beta stabilizers in a TiAl alloy. Metall Mater Trans A 32, 1573–1589 (2001). https://doi.org/10.1007/s11661-001-0136-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0136-4

Keywords

Navigation