Skip to main content
Log in

Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The precipitation behavior of a commercial high-strength low-alloy (HSLA) steel microalloyed with 0.086 wt pct Nb and 0.047 wt pct Ti has been investigated using transmission electron microscopy (TEM) and mechanical testing. The emphasis of this study is to compare an industrially hot-rolled steel and samples from a laboratory hot torsion machine simulation. From TEM observations, the Ti and Nb containing precipitates could be grouped according to their size and shape. The precipitates in order of size were found to be cubic TiN particles with sizes in the range of 1 µm, grain boundary precipitates with diameters of approximately 10 nm, and very fine spherical or needle-shaped precipitates with sizes on the order of 1 nm. The needlelike precipitates were found on dislocations in ferrite and constituted the dominant population in terms of density. Thus, they appear to be responsible for the precipitation strengthening observed in this steel. Aging tests were carried out at 650°C to evaluate the precipitate strengthening kinetics in detail. The strengthening mechanisms can be described with a nonlinear superposition of dislocation and precipitation hardening. The mechanical properties of torsion-simulated material and as-coiled industrial material are similar; however, there are some microstructural differences that can be attributed to the somewhat different processing routes in the laboratory as compared to hot strip rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High Strength Low Alloy Steels, Butterworth and Co., London, 1988.

    Google Scholar 

  2. M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1247–59.

    CAS  Google Scholar 

  3. E.V. Pereloma and J.D. Boyd: Mater. Sci. Technol., 1996, vol. 12, pp. 808–17.

    CAS  Google Scholar 

  4. M. Militzer, D.Q. Jin, and I.V. Samarasekera: in Advances in Industrial Materials, D.S. Wilkinson, W.J. Poole, and A. Alpas, eds., The Metallurgical Society of CIM, Montreal, 1998, pp. 63–77.

    Google Scholar 

  5. C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187–94.

    Article  CAS  Google Scholar 

  6. P.D. Hodgson and R.K. Gibbs: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 1329–38.

    CAS  Google Scholar 

  7. I.V. Samarasekera, D.Q. Jin, and J.K. Brimacombe: 38th Mechanical Working and Steel Processing Conf. Proc., ISS, Warrendale, PA, 1997, vol. XXXIV, pp. 313–27.

    Google Scholar 

  8. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, pp. 197–206.

    CAS  Google Scholar 

  9. W.P. Sun, M. Militzer, D.Q. Bai, and J.J. Jonas: Acta Metall. Mater., 1993, vol. 41, pp. 3595–3604.

    Article  CAS  Google Scholar 

  10. S.F. Medina: Mater. Sci. Technol., 1998, vol. 14, pp. 217–21.

    CAS  Google Scholar 

  11. S.F. Medina and J.E. Mancilla: Acta Metall. Mater., 1994, vol. 42, pp. 3945–51.

    Article  CAS  Google Scholar 

  12. J. Andorfer, D. Auzinger, B. Buchmayr, W. Giselbrecht, G. Hribernig, G. Hubmer, A. Luger, and A. Samoilov: in Thermec ’97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 2069–75.

    Google Scholar 

  13. A. Prasad, S. Jha, and N.S. Mishra: Steel Res., 1995, vol. 66, pp. 416–23.

    CAS  Google Scholar 

  14. M. Militzer, W.J. Poole, and W.P. Sun: Steel Res., 1998, vol. 69, pp. 279–85.

    CAS  Google Scholar 

  15. H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., 1990, vol. 38, pp. 1789–1802.

    Article  CAS  Google Scholar 

  16. A.J. DeArdo, J.M. Gray, and L. Meyer: in Niobium, H. Stuart, ed., TMS-AIME, Warrendale, PA, 1984, pp. 685–759.

    Google Scholar 

  17. R.M. Brito and H.J. Kestenbach: J. Mater. Sci., 1981, vol. 16, pp. 1257–63.

    Article  CAS  Google Scholar 

  18. H.J. Kestenbach: Mater. Sci. Technol., 1997, vol. 13, pp. 731–39.

    CAS  Google Scholar 

  19. A. Itman, K.R. Cardoso, and H.J. Kestenbach: Mater. Sci. Technol., 1997, vol. 13, pp. 49–55.

    CAS  Google Scholar 

  20. D. Hall and J. Worobec: in Phase Transformations During the Thermal/Mechanical Processing of Steel, E.B. Hawbolt and S. Yue, eds., The Metallurgical Society of CIM, Montreal, 1995, pp. 305–16.

    Google Scholar 

  21. Z. Chen, M.H. Loretto, and R.C. Cochrane: Mater. Sci. Technol., 1987, vol. 3, 836–44.

    CAS  Google Scholar 

  22. R.G. Baker and J. Nutting: in Precipitation Processes in Steels, The Iron and Steel Institute, London, 1959, pp. 1–21.

    Google Scholar 

  23. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan, and Y. Higo: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 306–15.

    CAS  Google Scholar 

  24. J. Bošansky, D.A. Porter, H. Åström, and K.E. Easterling: Scand. J. Metall., 1977, vol. 6, pp. 125–31.

    Google Scholar 

  25. JCPDS-International Center for Diffraction Data, Version 2.12, JCPDS-ICDD, Swarthmore, PA, 1991.

  26. M.T. Miglin, J.P. Hirth, A.R. Rosenfeld, and W.A.T. Clark: Metall. Trans. A, 1986, vol. 17A, pp. 791–98.

    CAS  Google Scholar 

  27. P. Choquet, P. Fabrègue, J. Giusti, B. Chamont, J.N. Pezant, and F. Blanchet: in Mathematical Modelling of Hot Rolling of Steels, S. Yue, ed., The Metallurgical Society of CIM, Montreal, 1990, pp. 34–43.

    Google Scholar 

  28. E. Nes: Progr. Mater. Sci., 1997, vol. 41, pp. 129–93.

    Article  CAS  Google Scholar 

  29. H.J. Frost and M.F. Ashby: Deformation-Mechanisms Maps, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  30. T. Gladman: Mater. Sci. Technol., 1999, vol. 15, pp. 30–36.

    Article  CAS  Google Scholar 

  31. D. Hull and D.J. Bacon: Introduction to Dislocations, 3rd ed, Pergamon Press, Oxford, United Kingdom, 1984.

    Google Scholar 

  32. M.F. Ashby: Cambridge Materials Selector, Software Version 2.02, Granta Design Ltd., Cambridge, UK, 1994.

    Google Scholar 

  33. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., John Wiley & Sons, New York, NY, 1971, pp. 12–135.

    Google Scholar 

  34. T. Gladman: The Physical Metallurgy of Microalloyed Steels, Institute of Materials, London, 1997.

    Google Scholar 

  35. A.J.E. Foreman and M.J. Makin: Can. J. Phys., 1967, vol. 45, pp. 511–17.

    CAS  Google Scholar 

  36. K.A. Taylor: Scripta Metall. Mater., 1995, vol. 32, pp. 7–12.

    Article  CAS  Google Scholar 

  37. M. Vivas, P. Lours, C. Levaillant, A. Couret, M.J. Casanove, and A. Coujou: Mater. Sci. Eng. A, 1997, vols. A234–A236, pp. 664–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charleux, M., Poole, W.J., Militzer, M. et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel. Metall Mater Trans A 32, 1635–1647 (2001). https://doi.org/10.1007/s11661-001-0142-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0142-6

Keywords

Navigation