Skip to main content
Log in

Role of Mg in the stress corrosion cracking of an Al-Mg alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The corrosion and stress corrosion cracking (SCC) susceptibility of an Al-Mg alloy, AA5083, has been shown to depend on the precipitation of the Mg-rich β phase, (Al3Mg2), but not the enrichment of elemental Mg at grain boundaries to an enrichment ratio of 1.4. These results were determined by measuring the progress of Mg enrichment at grain boundaries, for increasing thermal-treatment times, using auger electron spectroscopy (AES) of grain boundaries exposed by fracture within the spectrometer and by analytical electron microscopy (AEM) of thin foils. The progress of the β phase precipitation was followed by AEM and scanning electron microscopy (SEM), for the same thermal-treatment times. The lack of a Mg-segregation effect on SCC was demonstrated by results obtained with X-ray photoelectron spectroscopy (XPS) analysis of Mg-implanted Al following in-situ electrochemical tests and SCC tests, while the dominance of β phase precipitation was demonstrated by electrochemical analysis and SCC testing. Crack-growth tests of alloy AA5083 demonstrated faster cracking at potentials anodic to the open circuit potential (OCP) with no increase at potentials cathodic to the OCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.O. Speidel and M.V. Hyatt: in Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1972, vol. 2, pp. 115–55.

    Google Scholar 

  2. A.F. Beck and P.R. Sperry: Fundamental Aspects of Stress Corrosion Cracking, National Association of Corrosion Engineers, Houston, TX, 1969, pp. 513–29.

    Google Scholar 

  3. D.O. Sprowls and R.H. Brown: Fundamental Aspects of Stress Corrosion Cracking, National Association of Corrosion Engineers, Houston, TX 1969, pp. 466–512.

    Google Scholar 

  4. J.S. Vetrano, R.E. Williford, and R.H. Jones: Automotive Alloys I, TMS Annual Meeting, Orlando, FL, 1997, S.K. Das, ed., TMS, Warrendale, PA, 1997, pp. 77–85.

    Google Scholar 

  5. C. Lea and C. Molinari: J. Mater. Sci. 1984, vol. 19, pp. 2336–52.

    Article  CAS  Google Scholar 

  6. F.J. Esposto, C.-S. Zhang, R.R. Norton, and R.S. Timsit: Surf. Sci., 1994, vol. 302, pp. 109–20.

    Article  CAS  Google Scholar 

  7. X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, C. Lane Roher, and R.W. Hyland, Jr.: Surf. Sci., 1997, vol. 373, pp. 357–70.

    Article  Google Scholar 

  8. X.-Y. Liu and J.B. Adams: Acta Mater., 1998, vol. 46, pp. 3467–76.

    Article  CAS  Google Scholar 

  9. D.R. Baer, C.F. Windisch, Jr., M.H. Engelhard, M.J. Danielson, R.H. Jones, and J.S. Vetrano: J. Vac. Sci. Technol., 2000, vol. A18 (1), pp. 131–36.

    Google Scholar 

  10. C.F. Windisch, Jr., D.R. Baer, M.H. Engelhard, M.J. Danielson, and R.H. Jones: presented at the 198th meeting of the Electrochemical Society, Phoenix, AZ, Oct., 2000.

  11. J.S. Vetrano, D.R. Baer, and R.H. Jones: Automotive Alloys II, TMS Annual Meeting, San Antonio, TX, 1998, S.K. Das, ed., TMS, Warrendale, PA, 1998, p. 117.

    Google Scholar 

  12. J.R. Pickens, J.R. Gordon, and J.A.S. Green: Metall. Trans. A, 1983, vol. 14A, pp. 925–30.

    Google Scholar 

  13. J. Albrecht, B.J. McTiernan, I.M. Bernstein, and A.W. Thompson: Scripta Metall. 1977, vol. 11, pp. 893–97.

    Article  CAS  Google Scholar 

  14. R.G. Song, M.K. Tseng, B.J. Zhang, J. Liu, Z.H. Jin, and K.S. Shin: Acta Mater., 1996, vol. 44, pp. 3241–48.

    Article  CAS  Google Scholar 

  15. P.K. Poulose, J.E. Morall, and A.J. McEvily: Metall. Trans., 1974, vol. 5, pp. 1393–1400.

    CAS  Google Scholar 

  16. J.K. Park: Mater. Sci. Eng., 1988, vol. A103, pp. 223–31.

    CAS  Google Scholar 

  17. S. Samson: Acta Cryst., 1965, vol. 19, p. 401.

    Article  CAS  Google Scholar 

  18. M.P. Seah: in Practical Surface Analysis, 2nd ed., vol. 1, Auger and X-ray Photoelectron Spectroscopy, D. Briggs and M.P. Seah, eds., John Wiley & Sons, Chichester, 1990, pp. 201–55.

    Google Scholar 

  19. P.M. Hall and J.M. Morabito: Surf. Sci., 1979, vol. 83, p. 391.

    Article  CAS  Google Scholar 

  20. M.P. Seah and W.A. Dench: Surf. Interface Anal., 1978, vol. 1, pp. 2–11.

    Article  Google Scholar 

  21. N.J.H. Holroyd: Proc. Ist. Int. Conf. on Environment-Induced Cracking of Metals, Kohler, WI, Oct. 2–7, 1988, National Association of Corrosion Engineers, Houston, TX, 1990, pp. 311–45.

    Google Scholar 

  22. R.J. Gest and A.R. Troiano: Corrosion, 1974, vol. 30 (8), pp. 274–79.

    CAS  Google Scholar 

  23. G.M. Scamans: J. Mater. Sci., 1978, vol. 13, pp. 27–36.

    Article  CAS  Google Scholar 

  24. R. Alani and P.R. Swann: Br. Corr. J., 1977, vol. 12, pp. 80–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.H., Baer, D.R., Danielson, M.J. et al. Role of Mg in the stress corrosion cracking of an Al-Mg alloy. Metall Mater Trans A 32, 1699–1711 (2001). https://doi.org/10.1007/s11661-001-0148-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0148-0

Keywords

Navigation