Skip to main content
Log in

Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural factors governing hardness in friction-stir welds of the solid-solution-hardened Al alloys 1080 and 5083 were examined by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of grain boundary on the hardness was examined in an Al alloy 1080 which did not contain any second-phase particles. The weld of Al alloy 1080 had a slightly greater hardness in the stir zone than the base material. The maximum hardness was located in the thermomechanically affected zone (TMAZ). The stir zone consisted of recrystallized fine grains, while the TMAZ had a recovered grain structure. The increase in hardness in the stir zone can be explained by the Hall-Petch relationship. On the other hand, the hardness profiles in the weld of Al alloy 5083 were roughly homogeneous. Friction-stir welding created the fine recrystallized grains in the stir zone and recovered grains in the TMAZ in the weld of this alloy. The stir zone and the TMAZ had slightly higher dislocation densities than the base material. Many small Al6(Mn,Fe) particles were detected in all the grains of the weld. The hardness profiles could not be explained by the Hall-Petch relationship, but rather by Orowan hardening. The results of the present study suggest that the hardness profile is mainly affected by the distribution of small particles in friction-stir welds of Al alloys containing many such particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Dawes: Proc. 6th Int. Symp. of JWS, JWS, Nagoya, Japan, 1996, pp. 711–17.

    Google Scholar 

  2. G. Liu, L.E. Murr, C.-S. Niou, J.C. McClure, and F.R. Vega: Scripta Mater., 1997, vol. 37, pp. 355–61.

    Article  CAS  Google Scholar 

  3. L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci., 1998, vol. 33, pp. 1243–51.

    Article  CAS  Google Scholar 

  4. Y. Li, L.E. Murr, and J.C. McClure: Mater. Sci. Eng. A, 1999, vol. 271, pp. 213–23.

    Article  Google Scholar 

  5. O.T. Midling: Proc. ICAA-4, Atlanta, GA, 1994, pp. 451–58.

  6. S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure: Scripta Mater., 1999, vol. 41, pp. 809–15.

    Article  CAS  Google Scholar 

  7. Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2429–37.

    CAS  Google Scholar 

  8. Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, and T. Hashimoto: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3125–30.

    CAS  Google Scholar 

  9. Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, and T. Hashimoto: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 941–48.

    CAS  Google Scholar 

  10. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.

    Article  CAS  Google Scholar 

  11. K.V. Jata, K.K. Sankaran, and J.J. Ruschau: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2181–92.

    CAS  Google Scholar 

  12. M. Kumagai and S. Tanaka: J. Light Met. Welding Constr., 2001, vol. 39, pp. 22–28.

    CAS  Google Scholar 

  13. A.P. Reynolds: Proc. 5th Int. Conf. on Trends in Welding Research, Pine Mountain, GA, 1998, ASM International, Materials Park, OH, 1999, pp. 563–67.

    Google Scholar 

  14. L.-E. Svensson, L. Karlsson, H. Larsson, B. Karlsson, M. Fazzini, and J. Karlsson: Sci. Technol. Weld. Joining, 2000, vol. 5, pp. 285–96.

    Article  CAS  Google Scholar 

  15. L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1801–03.

    Article  CAS  Google Scholar 

  16. Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, and M. Enomoto: Scripta Mater., 2001, vol. 45, pp. 109–14.

    Article  CAS  Google Scholar 

  17. K. Kannan, C.H. Johnson, and C.H. Hamilton: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1211–20.

    CAS  Google Scholar 

  18. R.E. Sanders, Jr., S.F. Baumann, and H.C. Stumpf: in Treatise on Materials Science and Technology, vol. 31, Aluminum Alloys-Contemporary Research and Applications, A.K. Vasudevam and R.D. Doherty, eds., Academic Press, New York, NY, 1989, pp. 65–105.

    Google Scholar 

  19. J. Hu, K. Ikeda, and T. Murakami: J. Jpn Inst. Light Met., 1996, vol. 46, pp. 126–31.

    Article  CAS  Google Scholar 

  20. B.A. Parker: in Treatise on Materials Science and Technology, vol. 31, Aluminum Alloys—Contemporary Research and Applications, A.K. Vasudevam and R.D. Doherty, eds., Academic Press, New York, NY, 1989, pp. 539–62.

    Google Scholar 

  21. Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda: Proc. 7th Int. Symp. of JWS, JWS, Kobe, Japan, 2001, in press.

    Google Scholar 

  22. H. Fujita and T. Tabata: Acta Metall., 1973, vol. 21, pp. 355–65.

    Article  CAS  Google Scholar 

  23. N. Hansen: Acta Metall., 1977, vol. 25, pp. 862–69.

    Google Scholar 

  24. Y. Ito, N. Tsuji, Y. Saito, H. Utsunomiya, and T. Sakai: J. Jpn Inst. Met., 2000, vol. 64, pp. 429–37.

    CAS  Google Scholar 

  25. H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng. A, 1999, vol. A265, pp. 188–96.

    CAS  Google Scholar 

  26. M.F. Ashby and D.R.H. Jones: Engineering Materials I, Pergamon Press, Oxford, United Kingdom, 1980, p. 105.

    Google Scholar 

  27. K.V. Jata and S.L. Semiatin: Scripta Mater., 2001, vol. 43, pp. 743–49.

    Google Scholar 

  28. Y.S. Sato and H. Kokawa: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 3023–31.

    CAS  Google Scholar 

  29. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bampton: Scripta Mater., 1997, vol. 36, pp. 69–75.

    Article  CAS  Google Scholar 

  30. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee: Scripta Mater., 2000, vol. 42, pp. 163–68.

    CAS  Google Scholar 

  31. H. Okamura: J. Jpn Welding Soc., 2000, vol. 67, pp. 560–71.

    Google Scholar 

  32. H.B. McShane, C.P. Lee, and T. Sheppard: Mater. Sci. Technol., 1990, vol. 6, pp. 428–40.

    CAS  Google Scholar 

  33. Thermochemical Database for Light Metal Alloys, COST 507, I. Ansara, A.T. Dinsdale, and M.H. Rand, eds., European Commission, Luxembourg, 1998.

    Google Scholar 

  34. R. Armstrong, I. Godd, R.M. Douthwaite, and N.J. Petch: Phil. Mag., 1962, vol. 7, pp. 45–58.

    CAS  Google Scholar 

  35. J.D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, NY, 1975, pp. 118–20.

    Google Scholar 

  36. J.D. Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, New York, NY, 1975, pp. 406–07.

    Google Scholar 

  37. M. Kato: Introduction of the Theory of Dislocations, Shokabo, Tokyo, 1999, pp. 123–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y.S., Park, S.H.C. & Kokawa, H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall Mater Trans A 32, 3033–3042 (2001). https://doi.org/10.1007/s11661-001-0178-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0178-7

Keywords

Navigation