Skip to main content
Log in

Influence of martensite content and morphology on the toughness and fatigue behavior of high-martensite dual-phase steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dual-Phase and Cold Pressing Vanadium Steels in the Automobile Industry, Vanitec, Berlin, 1978.

  2. Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., AIME, New York, NY, 1979.

    Google Scholar 

  3. Formable HSLA and Dual-Phase Steels, A.T. Davenport, ed., AIME, New York, NY, 1979.

    Google Scholar 

  4. R.G. Davies and C.L. Magee: Dual-Phase and Cold Pressing Vanadium Steels in the Automobile Industry, Vanitec, Berlin, 1978, p. 25.

    Google Scholar 

  5. S. Kang and H. Kwon: Metall. Trans. A, 1987, vol. 18A, pp. 1587–92.

    CAS  Google Scholar 

  6. A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–1202.

    CAS  Google Scholar 

  7. K.K. Ray and S. Ray: Proc. Int. Symp. on Fatigue and Fracture in Steel and Concreate Structures, A.G. Madhava Rao and T.V.S.R. Appa Rao, eds., Oxford and IBH, Delhi, 1991, pp. 317–32.

    Google Scholar 

  8. K.K. Ray, D. Chakraborty, and S. Ray: J. Mater. Sci., 1994, vol. 29, pp. 921–28.

    Article  CAS  Google Scholar 

  9. Standard Designation E399-90, ASTM, Philadelphia, PA, 1993, vol. 03.01, pp. 509–39.

  10. Standard Designation E561-92a, ASTM, Philadelphia, PA, 1993, vol. 03.01, pp. 600–11.

  11. Standard Designation E813-89, ASTM, Philadelphia, PA, 1993, vol. 03.01, pp. 738–52.

  12. Methods for “Crack Opening Displacement (COD) Testing,” BS 5762, British Standards Institute, 1979.

  13. L.M. Barker: Eng. Fract. Mech., 1977, vol. 9, pp. 361–69.

    Article  Google Scholar 

  14. J.C. Newman Jr.: in Chevron Notched Specimens: Testing and Stress Analysis, ASTM STP, 855, J.H. Under Wood, eds., ASTM, Philadelphia, PA, 1984, pp. 5–31.

    Google Scholar 

  15. Standard Designation E1304-89, ASTM, Philadelphia, PA, 1993, vol. 03.01, pp. 962–72.

  16. K.K. Ray, Dipita Chakraborty, and S. Ray: Int. J. Fract., 1992, vol. 57, pp. R7-R11.

    Article  CAS  Google Scholar 

  17. K.K. Ray, D. Chakraborty, and S. Ray: in Advances in Fracture Resistance and Structural Integrity, V.V. Panasyuk, D.M.R. Taplin, M.C. Pandey, O. Ye. Andreykiv, R.O. Ritchie, J.F. Knott, and P. Rama Rao, eds., Pergamon Press, 1994, pp. 569–74.

  18. W.L. Server, D.R. Ireland, and R.A. Wullaert: Strength and Toughness Evolutions from an Instrumented Impact Test, TR 74-29R, Effects Technology, Inc., (Dynatup), CA, 1974.

    Google Scholar 

  19. K.L. Murty, R.P. Shogan, and W.H. Bamford: Nucl. Technol., 1984, vol. 64, pp. 268–74.

    CAS  Google Scholar 

  20. R.O. Ritchie: Int. Metall. Rev., 1979, vol. 20, pp. 205–30.

    Google Scholar 

  21. R.O. Ritichie and S. Suresh: Metall. Trans. A, 1982, vol. 13A, pp. 937–40.

    Google Scholar 

  22. G.T. Grey, F.W. Thompson, and J.C. Williams: Metall. Trans. A, 1983, vol. 14A, pp. 421–33.

    Google Scholar 

  23. V.V. Dutta, S. Suresh, and R.O. Ritchie: Metall. Trans. A, 1984, vol. 15A, pp. 1193–1207.

    CAS  Google Scholar 

  24. K. Minakawa, Y. Matsuo, and A.J. McEvily: Metall. Trans. A, 1982, vol. 13A, pp. 439–45.

    CAS  Google Scholar 

  25. H. Suzuki and A.J. McEvily: Metall. Trans. A, 1979, vol. 10A, pp. 475–81.

    CAS  Google Scholar 

  26. J.A. Wasynczuk, R.O. Ritchie, and G. Thomas: Mater. Sci. Eng., 1984, vol. 62, pp. 79–92.

    Article  CAS  Google Scholar 

  27. T. Kunio and K. Yamada: in Fatigue Mechanisms, ASTM STP 675, J.T. Fong, ed., ASTM, Philadelphia, PA, 1979, pp. 342–70.

    Google Scholar 

  28. A. Bag: Ph.D. Dissertation, IIT, Kharagpur, India, 1996.

    Google Scholar 

  29. Standard Designation E647-93, ASTM, Philadelphia, PA, 1993, vol. 03.01, pp. 679–706.

  30. Wu Shang-Xian: in Chevron Notched Specimens: Testing and Stress Analysis, ASTM STP 855, J.H. Underwood, S.W. Freiman, and F.I. Baratta, eds., ASTM, Philadelphia, PA, 1984, pp. 176–92.

    Google Scholar 

  31. J.F. Knott: Fundamentals of Fracture Mechanics, Butterworth and Co., London, 1973.

    Google Scholar 

  32. P.C. Paris: Fatigue—An Interdisciplinary Approach, Proc. 10th Sagamore Conf., Syracuse University Press, Syracuse, NY, 1964, pp. 107–27.

    Google Scholar 

  33. L.M. Barker: in Chevron Notched Speciments: Testing and Stress Analysis, ASTM STP 855, J.H. Under Wood, S.W. Freiman, and F.I. Baratta, eds., ASTM, Philadelphia, PA, 1984, pp. 117–33.

    Google Scholar 

  34. Y.S. Zheng, Z.G. Wang, and S.H. Ai: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1713–23.

    CAS  Google Scholar 

  35. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, Singapore, 1989, p. 545.

    Google Scholar 

  36. L.P. Pook: J. Strain Analysis, 1975, vol. 10, pp. 242–50.

    CAS  Google Scholar 

  37. D.L. Chen, Z.G. Wang, X.X. Jiang, S.H. Ai, and C.H. Shih: in Basic Mechanisms in Fatigue of Metals, Materials Science Monographs 46, P. Lukáš and J. Polák, eds., Elsevier, Amsterdam, 1988, pp. 351–59.

    Google Scholar 

  38. J.H. Bulloch and R.O. Kennedy: Res. Mechanica, 1985, vol. 15, pp. 259–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bag, A., Ray, K.K. & Dwarakadasa, E.S. Influence of martensite content and morphology on the toughness and fatigue behavior of high-martensite dual-phase steels. Metall Mater Trans A 32, 2207–2217 (2001). https://doi.org/10.1007/s11661-001-0196-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0196-5

Keywords

Navigation