Skip to main content
Log in

Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A commercial aluminum alloy, 5083, was processed using a cryomilling synthesis approach to produce powders with a nanostructured grain size. The powders were subsequently degassed, hot isostatically pressed, and extruded. The grain size at each processing step was measured utilizing both X-ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the n-5083 extruded material were determined utilizing ASTM E8-93, Standard Test Methods for Tension Testing of Metallic Materials. This processing technique was found to produce a thermally stable nanostructured aluminum alloy which maintained an average grain size of 30 to 35 nm through several processing steps up to 0.61 T mp . The thermal stability was attributed to Zener pinning of the grain boundaries by AIN and Al2O3 particles and solute drag of numerous atomic species. The nanostructured 5083 was found to have a 30 pct increase in yield strength and ultimate strength over the strongest commercially available form of 5083, with no corresponding decrease in elongation. The enhanced ductility is attributed to the presence of a few large, single-crystal aluminum grains acting as crack-blunting objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Nieman, J.R. Weertman, and R.W. Siegel: J. Mater. Res., 1991, vol. 6, p. 1012.

    CAS  Google Scholar 

  2. K. Higashi, A. Uoya, T. Mukai, S. Tanimura, A. Inoue, T. Masumoto, and K. Ohtera: Mater. Sci. Eng., 1994, vols. A181–A182, p. 1068.

    Google Scholar 

  3. G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov: Nanostr. Mater., 1997, vol. 9, p. 477.

    Article  CAS  Google Scholar 

  4. H. Gleiter: Nanostr. Mater., 1995, vol. 6, p. 3.

    Article  CAS  Google Scholar 

  5. M.N. Rittner and T. Abraham: JOM, 1998, vol. 1, p. 36.

    Google Scholar 

  6. M.V. Markushev, C.C. Bampton, M.Y. Murashkin, and D.A. Hardwick: Mater. Sci. Eng., 1997, vols. A234–A236, p. 927.

    Google Scholar 

  7. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N. Tsenev, R. Valiev, Y. Ma, and T. Langdon: J. Mater. Res., 1993, vol. 8, p. 2810.

    CAS  Google Scholar 

  8. T. Mukai, M. Kawazoe, and K. Higashi: Mater. Sci. Eng., 1998, vol. A247, p. 270.

    CAS  Google Scholar 

  9. M. Mabuchi, H. Iwasaki, and K. Higashi: Nanostr. Mater., 1997, vol. 8, p. 1105.

    Article  CAS  Google Scholar 

  10. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone: Mater. Res. Soc. Symp. Proc., 1989, vol. 132, p. 79.

    Google Scholar 

  11. R.J. Perez, B. Huang, and E.J. Lavernia: Nanostr. Mater., 1996, vol. 7, p. 565.

    Article  CAS  Google Scholar 

  12. B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley, Cambridge, MA, 1978, p. 101.

    Google Scholar 

  13. M.K. Miller, A. Cerezo, M.G. Hetherington, and G.D.W. Smith: Atom Probe Field Ion Microscopy, Clarendon Press, Oxford, United Kingdom, 1996.

    Google Scholar 

  14. C.E. Krill and R. Birringer: Phil. Mag. A, 1998, vol. 77, p. 621.

    CAS  Google Scholar 

  15. J.R. Davis: ASM Specialty Handbook—Aluminum and Aluminum Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994, p. 675.

    Google Scholar 

  16. E.A. Brandes: Smithell’s Metals Reference Book, Butterworth-Heinemann, London, 1992.

    Google Scholar 

  17. O. Susegg, E. Hellum, A. Olsen, and M.J. Luton: Phil. Mag. A, 1993, vol. 68, p. 367.

    CAS  Google Scholar 

  18. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia: Metall. Trans. A, 1998, vol. 29A, pp. 2469–75.

    Article  CAS  Google Scholar 

  19. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: University of California, Irvine, CA, unpublished research, 2000.

  20. J.P. Hirth and J. Lothe: Theory of Dislocations, John Wiley & Sons, New York, NY, 1982, p. 788.

    Google Scholar 

  21. T. Mukai, K. Ishikawa, and K. Higashi: Mater. Sci. Eng., 1995, vol. A204, p. 12.

    CAS  Google Scholar 

  22. V.G. Gryaznov and L.I. Trusov: Progr. Mater. Sci., 1993, vol. 37, p. 289.

    Article  CAS  Google Scholar 

  23. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, p. 223.

    Article  CAS  Google Scholar 

  24. J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven: MRS Bull., 1999, vol. 2, p. 44.

    Google Scholar 

  25. T.R. Malow and C.C. Koch: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2285–95.

    Article  CAS  Google Scholar 

  26. R.Z. Valiev and I.V. Alexandrov: Nanostr. Mater., 1999, vol. 12, p. 35.

    Article  Google Scholar 

  27. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: Mater. Sci. Eng., 1997, vol. A234, p. 77.

    Google Scholar 

  28. D. Ponge, M. Bredehoft, and G. Gottstein: Scripta Mater., 1997, vol. 37, p. 1769.

    Article  CAS  Google Scholar 

  29. N. Wang, Z. Wang, K.T. Aust, and U. Erb: Mater. Sci. Eng., 1997, vol. A237, p. 150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellkamp, V.L., Lavernia, E.J. & Melmed, A. Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall Mater Trans A 32, 2335–2343 (2001). https://doi.org/10.1007/s11661-001-0207-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0207-6

Keywords

Navigation