Skip to main content
Log in

Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model that describes the pearlite-to-austenite transformation during continuous heating in a eutectoid steel has been developed. The influence of structural parameters (such as the interlamellar spacing and edge length of pearlite colonies) and heating rate on the austenite formation kinetics has been experimentally studied and considered in the modeling. It has been found that the coarser the initial pearlite microstructure and the higher the heating rate, the slower the kinetics of austenite formation. Moreover, both the start and finish temperatures of the transformation slightly increase as the heating rate does, but the finish temperatures are more sensitive to that parameter. A good agreement (with an accuracy higher than 90 pct in the square correlation factor) between experimental and predicted values has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia and L.E. Svensson: Mathematical Modelling of Weld Phenomena, The Institute of Materials, London, 1993, p. 109.

    Google Scholar 

  2. C.I. García and A.J. DeArdo: Metall. Trans. A, 1981, vol. 12A, pp. 521–30.

    Google Scholar 

  3. G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28.

    Google Scholar 

  4. M.M. Souza, J.R.C. Guimaraes, and K.K. Chawla: Metall. Trans. A, 1982, vol. 13A, pp. 575–79.

    Google Scholar 

  5. Xue-Ling Cai, A.J. Garrat-Reed, and W.S. Owen: Metall. Trans. A, 1985, vol. 16A, pp. 543–57.

    CAS  Google Scholar 

  6. C. García de Andrés, F.G. Caballero, and C. Capdevila: Scripta Mater., 1998, vol. 38, pp. 1835–42.

    Article  Google Scholar 

  7. G.R. Speich and A. Szirmae: Trans. TMS-AIME, 1969, vol. 245, pp. 1063–74.

    CAS  Google Scholar 

  8. A. Roosz, Z. Gacsi, and E.G. Fuchs: Acta Metall., 1983, vol. 31, pp. 509–17.

    Article  CAS  Google Scholar 

  9. R.R. Judd and H.W. Paxton: Trans. TMS-AIME, 1968, vol. 242, pp. 206–15.

    CAS  Google Scholar 

  10. M. Hillert, K. Nilsson, and L.E. Torndahl: J. Iron Steel Inst., 1971, vol. 209, pp. 49–66.

    CAS  Google Scholar 

  11. D.P. Datta and A.M. Gokhale: Metall. Trans. A, 1981, vol. 12A, pp. 443–50.

    Google Scholar 

  12. E. Navara and R. Harrysson: Scripta Metall., 1984, vol. 18, pp. 605–10.

    Article  CAS  Google Scholar 

  13. S.F. Dirnfeld, B.M. Korevaar, and F. Van’t Spijker: Metall. Trans., 1974, vol. 5, pp. 1437–44.

    CAS  Google Scholar 

  14. E.E. Underwood: Quantitative Stereology, Addison-Wesley Publishing Co., Reading, MA, 1970, pp. 73–75.

    Google Scholar 

  15. S.A. Saltykov: Stereometric Metallography, 2nd ed., Metallurgizdat, Moscow, 1958, pp. 267–701.

    Google Scholar 

  16. R.T. De Hoff and F.H. Rhines: Quantitative Stereology, McGraw-Hill, New York, NY, 1968, p. 93.

    Google Scholar 

  17. F.S. Le Pera: J. Met., 1980, vol. 32, pp. 38–39.

    Google Scholar 

  18. M. Avrami: J. Chem. Phys., 1940, vol. 8, p. 212.

    Article  CAS  Google Scholar 

  19. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1975, p. 19.

    Google Scholar 

  20. G.A. Roberts and R.F. Mehl: Trans. ASM, 1943, vol. 31, pp. 613–50.

    Google Scholar 

  21. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.

    Google Scholar 

  22. M. Hillert: Jernkont. Ann., 1957, vol. 141, pp. 757–64.

    CAS  Google Scholar 

  23. M. Hillert: The Mechanism of Phase Transformation in Crystalline Solids, Institute of Metals, London, 1969, p. 231.

    Google Scholar 

  24. E. Navara, B. Bengtsson, and K.E. Easterling: Mater. Sci. Technol., 1986, vol. 2, pp. 1196–1201.

    CAS  Google Scholar 

  25. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloy, 2nd ed., Chapman and Hall, London, 1992, p. 101.

    Google Scholar 

  26. R.G. Kamat, E.B. Hawbolt, L.C. Brown, and J.K. Brimacombe: Metall. Trans. A, 1992, vol. 23A, pp. 2469–80.

    CAS  Google Scholar 

  27. C. Garcia de Andrés, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia: Scripta Mater., 1998, vol. 39, pp. 791–96.

    Article  Google Scholar 

  28. F.G. Caballero, C. Capdevila, and C. Garcia de Andrés: Scripta Mater., 2000, vol. 42, pp. 537–42.

    Article  CAS  Google Scholar 

  29. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, F.G., Capdevila, C. & de Andrés, C.G. Influence of pearlite morphology and heating rate on the kinetics of continuously heated austenite formation in a eutectoid steel. Metall Mater Trans A 32, 1283–1291 (2001). https://doi.org/10.1007/s11661-001-0218-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0218-3

Keywords

Navigation