Skip to main content
Log in

Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metal-intermetallic (aluminide) laminate (MIL) composites have been fabricated in air using dissimilar metal foils. Foils of varying Al thickness were reacted with foils of Ti-3Al-2.5V resulting in microstructures of well-bonded metal-intermetallic layered composites with either Ti or Al residual metal layers alternating with the Al3Ti intermetallic layers. The MIL composites exhibit a very high degree of microstructural design and control. Microstructure characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD) has been performed, and basic physical properties of the Ti-Al composites have been determined. The Ti-Al reaction has been studied by interrupting the reaction processing, in steps, to observe the microstructural changes. An oxide layer between the Ti and Al foils initially controls the reaction kinetics. After breakdown of the oxide layer, a two-phase Al+Al3Ti layer (∼10 µm thickness) is formed. After formation of the two-phase layer, liquid phases are continuously present, and Al3Ti spherules (∼10 µm diameter) are formed through interfacial tension, solidify (in times of 2 to 4 µs), and are expelled into the liquid. This mechanism allows for a continuous reaction interface and higher reaction rates. Both reaction regimes, diffusion through the oxide, and, subsequently, the intermetallic phase reaction mechanism result in linear kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.E. Deve and M.J. Maloney: Acta Metall. Mater., 1991, vol. 39 (10), pp. 2275–84.

    Article  CAS  Google Scholar 

  2. M. Bannister and M.F. Ashby: Acta Metall. Mater., 1991, vol. 39 (11), pp. 2575–82.

    Article  CAS  Google Scholar 

  3. M.C. Shaw, D.B. Marshall, M.S. Dadkhah, and A.G. Evans: Acta Metall. Mater., 1993, vol. 41 (11), pp. 3311–22.

    Article  CAS  Google Scholar 

  4. H.C. Cao and A.G. Evans: Acta Metall. Mater., 1991, vol. 39 (12), pp. 2997–3005.

    Article  CAS  Google Scholar 

  5. U. Anselmi-Tamburini and Z.A. Munir: J. Appl. Phys., 1989, vol. 66 (10), pp. 5039–45.

    Article  CAS  Google Scholar 

  6. U. Anselmi-Tamburini and Z.A. Munir: in Combustion and Plasma Synthesis of High-Temperature Materials, Z.A. Munir and J.B. Holt, eds., VCH Publishers, New York, NY, 1990, pp. 100–05.

    Google Scholar 

  7. J.C. Rawers, J.S. Hansen, D.E. Alman, J.A. Hawk: J. Mater. Sci. Lett., 1994, vol. 13, pp. 1357–60.

    Article  CAS  Google Scholar 

  8. D.E. Alman, J.C. Rawers, and J.A. Hawk: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 589–699.

    CAS  Google Scholar 

  9. D.E. Alman, C.P. Dogan, J.A. Hawk, and J.C. Rawers: Mater. Sci. Eng., 1995, vols. A192-A193, pp. 624–32.

    Google Scholar 

  10. H.E. Maupin, J.C. Rawers, and J.A. Hawk: 1st Int. Conf. on Advanced Synthesis of Engineered Materials, San Francisco, CA, 1992, pp. 9–15.

  11. J.C. Rawers, D.E. Alman, and J.A. Hawk: Int. J. Self-Prop. High. Temp. Syn., 1993, vol. 2 (1), pp. 12–24.

    CAS  Google Scholar 

  12. A. Jakob and M.O. Spiedel: Mater. Sci. Technol., 1994, vol. 10, pp. 845–47.

    CAS  Google Scholar 

  13. A. Jacob and M.O. Spiedel: Mater. Sci. Eng., 1994, vol. A189, pp. 129–36.

    Google Scholar 

  14. D.R. Bloyer, K.T.V. Rao, and R.O. Ritchie: Mater. Sci. Eng., 1996, vol. A216, pp. 80–90.

    CAS  Google Scholar 

  15. D.R. Bloyer, K.T.V. Rao, and R.O. Ritchie: Metall. Mater. Trans. A, 1998, vol. 29A. pp. 2483–496.

    Article  CAS  Google Scholar 

  16. A.G. Merzhanov: Combustion and Plasma Synthesis of High Temperature Materials, Z.A. Munir and J.B. Holt, eds., VCH Publishers, New York, NY, 1990, pp. 1–53.

    Google Scholar 

  17. Z.A. Munir: High Temp. Sci., 1990, vol. 27, pp. 279–93.

    Google Scholar 

  18. Z.A. Munir: Am. Cer. Soc. Bull., 1988, vol. 67, pp. 342–49.

    CAS  Google Scholar 

  19. Z.A. Munir and U. Anselmi-Tamburini: Mater. Sci. Rep, 1989, pp. 277–365.

  20. N.P. Novikov, I.P. Borovinskaya, and A.G. Merzhanov: in Combustion Processes in Chemical Technology and Metallurgy, A.G. Merzhanov, ed., Chernogolovka, Russia, 1975, p. 174.

    Google Scholar 

  21. F.J.J. van Loo and G.D. Rieck: Acta Metall., 1973, vol. 21, pp. 61–71.

    Article  Google Scholar 

  22. T. Shimozaki, T. Okino, M. Yamane, Y. Wakamatsu, and M. Onishi: Defect Diff. Forum, 1997, vols. 143–147, pp. 591–96.

    Google Scholar 

  23. K. Nonaka, Y. Ogata, T. Uehara, W. Sprengal, H. Nakajima, and H. Fujii: in Metallurgy and Technology of Practical Titanium Alloys, S. Fijishiro, D. Eylon, and T. Kishi, eds., TMS, Warrandale, PA, 1994, pp. 85–89.

    Google Scholar 

  24. M. Thuillard, L.T. Tran, and M.A. Nicolet: Thin Solid Films, 1988, vol. 166, pp. 21–27.

    Article  CAS  Google Scholar 

  25. P. Maugis, G. Blaise, and J. Philibert: Interface Dynamics and Growth, Materials Research Society Symposia Proceedings, K.S. Liang, M.P. Anderson, R.F. Bruinsma, and G. Scoles, eds., Materials Research Society, Pittsburgh, PA, 1992, vol. 237, pp. 679–84.

    Google Scholar 

  26. V.B. Rao and C.R. Houska: Metall. Trans. A, 1983, vol. 14A, pp. 61–66.

    Google Scholar 

  27. C. Michaelsen, S. Wohlert, R. Bormann, and K. Barmak: Thermodynamics and Kinetics of Phase Transformations, Materials Research Society Symposia Proceedings, J.S. Im, B. Park, A.L. Greer, and G.B. Stephenson, eds., Materials Research Society, Pittsburgh, PA, 1996, vol. 398, pp. 245–50.

    Google Scholar 

  28. J. Tardy and K.N. Tu: Phys. Rev. B, 1985, vol. 32 (4), pp. 2070–81.

    Article  CAS  Google Scholar 

  29. J.D. Baird: J. Nucl. Energy A, Reac. Sci., 1960, vol. 11, pp. 81–88.

    Article  CAS  Google Scholar 

  30. J. Mackowiak and L.L. Shrier: Acta Metall., 1956, vol. 4, pp. 556–57.

    Article  Google Scholar 

  31. J. Mackowiak and L.L. Shrier: J. Less-Common Met., 1959, vol. 1, pp. 456–66.

    Article  CAS  Google Scholar 

  32. J. Mackowiak and L.L. Shrier: J. Less-Common Met., 1968, vol. 15, pp. 341–46.

    Article  CAS  Google Scholar 

  33. Ahmed A. Abdel-Hamid: Z. Metallkd., 1991, vol. 82, pp. 921–27.

    CAS  Google Scholar 

  34. M. Sujata, S. Bhargava, and S. Sangal: J. Mater. Sci. Lett., 1997, vol. 16, pp. 1175–78.

    Article  CAS  Google Scholar 

  35. M. Sujata, S. Bhargava, and S. Sangal: Iron Steel Inst. Jpn., 1996, vol. 36 (3), pp. 255–62.

    CAS  Google Scholar 

  36. S. Wohlert and R. Bormann: J. Appl. Phys., 1999, vol. 85 (2), pp. 825–32.

    Article  CAS  Google Scholar 

  37. K.R. Coffey, L.A. Clevenger, K. Barmak, D.A. Rudman, and C.V. Thompson: Appl. Phys. Lett., 1989, vol. 55, pp. 852–54.

    Article  CAS  Google Scholar 

  38. Tae Won Lee, In Kyum Kim, Chi Hwan Lee, and Jong Hoon Kim: J. Matter. Sci. Lett., 1999, vol. 18, pp. 1599–1602.

    Article  CAS  Google Scholar 

  39. G. Slama and A. Vignes: J. Less-Common Met., 1971, vol. 24, pp. 1–21.

    Article  CAS  Google Scholar 

  40. T.K. Lee, J.H. Kim, and S.K. Hwang: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2723–29.

    Article  CAS  Google Scholar 

  41. W.Y. Wang and G.C. Weatherly: J. Mater. Sci., 1996, vol. 31, pp. 3707–13.

    Article  Google Scholar 

  42. K.S. Vecchio, Li-Hsing Yu, and M.A. Meyers: Acta. Metall. Mater., 1994, vol. 42 (3), pp. 701–14.

    Article  CAS  Google Scholar 

  43. M.A. Meyers, Li-Hsing Yu, and K.S. Vecchio: Acta Metall. Mater., 1994, vol. 42 (3), pp. 715–29.

    Article  CAS  Google Scholar 

  44. G.H. Geiger and D.R. Poirier: Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 1980, pp. 250 and 300.

    Google Scholar 

  45. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975, p. 131.

    Google Scholar 

  46. G. Sauthoff: Intermetallics, VCH Publishers, Weinheim, 1995, p. 32.

    Google Scholar 

  47. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH Publishers, New York, NY, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harach, D.J., Vecchio, K.S. Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metall Mater Trans A 32, 1493–1505 (2001). https://doi.org/10.1007/s11661-001-0237-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0237-0

Keywords

Navigation