Skip to main content
Log in

Stabilization mechanisms of retained austenite in transformation-induced plasticity steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three stabilization mechanisms—the shortage of nuclei, the partitioning of alloying elements, and the fine grain size—of the remaining metastable austenite in transformation-induced plasticity (TRIP) steels have been studied by choosing a model alloy Fe-0.2C-1.5Mn-1.5Si. An examination of the nucleus density required for an athermal nucleation mechanism indicates that such a mechanism needs a nucleus density as large as 2.5 · 1017 m−3 when the dispersed austenite grain size is down to 1 µm. Whether the random nucleation on various heterogeneities is likely to dominate the reaction kinetics depends on the heterogeneous embryo density. Chemical stabilization due to the enrichment of carbon in the retained austenite is the most important operational mechanism for the austenite retention. Based on the analysis of 57 engineering steels and some systematic experimental results, an exponential equation describing the influence of carbon concentration on the martensite start (M s) temperature has been determined to be M s (K)=273+545.8 · e −1.362w c(mass pct). A function describing the M s temperature and the energy change of the system has been found, which has been used to study the influence of the grain size on the M s temperature. The decrease in the grain size of the dispersed residual austenite gives rise to a significant decrease in the M s temperature when the grain size is as small as 0.1 µm. It is concluded that the influence of the grain size of the retained austenite can become an important factor in decreasing the M s temperature with respect to the TRIP steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zarei Hanzaki and S. Yue: Iron Steel Inst. Jpn. Int., 1997, vol. 37, pp. 583–89.

    CAS  Google Scholar 

  2. A. Zarei Hanzaki, P.D. Hodgson, and S. Yue: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 79–85.

    Google Scholar 

  3. J. Wang and S. van der Zwaag: Report No. P00.5.044, Netherlands Institute for Metals Research, Delft, 2000, pp. 1–21.

  4. W. Bleck, J. Ohlert, and K. Papamantellos: Steel Res., 1999, vol. 70, pp. 472–97.

    CAS  Google Scholar 

  5. J. Wang and S. van der Zwaag: ECSC Steel Workshop on Advanced Hot Rolling Practice and Products, Düsseldorf, Oct. 2000.

  6. V.F. Zackay, D. Parker, D. Fahr, and R. Bush: Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  7. J.R. Bradley, H.I. Aaronson, K.C. Russel, and W.C. Johnson: Metall. Trans. A, 1977, vol. 8A, pp. 1955–61.

    CAS  Google Scholar 

  8. S. Yamamoto, H. Yokoyama, K. Yamada, and M. Niikura: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 1020–6.

    CAS  Google Scholar 

  9. S. Kajiwara, S. Ohno, and K. Honma: Phil. Mag. A, 1991, vol. 63, pp. 625–44.

    CAS  Google Scholar 

  10. M.R. Meyerson and S.J. Rosenburg: Trans. ASM, 1954, vol. 56, pp. 1225–50.

    Google Scholar 

  11. M.G.H. Wells: J. Iron Steel Inst., 1961, vol. 198, pp. 173–74.

    Google Scholar 

  12. A.R. Entwisle: Metall. Trans., 1971, vol. 2, pp. 2395–2407.

    CAS  Google Scholar 

  13. C.L. Magee: Metall. Trans., 1971, vol. 2, pp. 2419–30.

    Article  CAS  Google Scholar 

  14. R.E. Cech and D. Turnbull: Trans. AIME, 1956, vol. 206, pp. 124–32.

    Google Scholar 

  15. A. Zarei Hanzaki, P.D. Hodgson, and S. Yue: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2405–14.

    Google Scholar 

  16. J.C. Fisher, J.H. Hollomon, and D. Turnbull: Trans. AIME, 1949, vol. 185, pp. 691–700.

    Google Scholar 

  17. D.Q. Bai, A. Di Chiro, and S. Yue: Mater. Sci. Forum, 1998, vols. 284–286, pp. 253–60.

    Google Scholar 

  18. W.J. Botta, D. Negri, and A.R. Yavari: Mater. Sci. Forum, 1999, vols. 312–314, pp. 387–92.

    Google Scholar 

  19. M. Hillert and J. Ågren: Advances in Phase Transitions, J.D. Embury and G.R. Purdy, Oxford, United Kingdom, 1988, pp. 1–19.

  20. J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1981, vol. 12A, pp. 1729–41.

    Google Scholar 

  21. J. Wang, P.J. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 769–76.

    CAS  Google Scholar 

  22. J. Wang and S. van der Zwaag: unpublished research.

  23. G.N. Haidemenopoulos, M. Grujicic, G.B. Olson, and M. Cohen: J. Alloys Compounds, 1995, vol. 220, pp. 142–47.

    Article  CAS  Google Scholar 

  24. L. Kaufman and M. Cohen: Trans. AIME, 1956, vol. 206, pp. 1393–1401.

    Google Scholar 

  25. J. Wang, P.J. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 761–68.

    CAS  Google Scholar 

  26. R.H. Davies, A.T. Dinsdale, J.A. Gisby, S.M. Hodson, and T.I. Barry: MTData Handbook, National Physical Laboratory, Middlesex, United Kingdom, 1994.

    Google Scholar 

  27. H.I. Aaronson, W.T.J. Reynolds, G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    CAS  Google Scholar 

  28. H.C. Chen, H. Era, and M. Shimizu: Metall. Trans. A, 1989, vol. 20A, pp. 437–45.

    CAS  Google Scholar 

  29. J. Wang, H.S. Fang, Z.G. Yang, and Y.K. Zheng: Iron Steel Inst. Jpn. Int., 1995, vol. 35, pp. 992–1000.

    CAS  Google Scholar 

  30. J. Wang, P.J. van der Wolk, and S. van der Zwaag: J. Mater. Sci., 2000, vol. 35, pp. 4393–4404.

    Article  CAS  Google Scholar 

  31. S. van der Zwaag: Mater. Sci. Forum, 1998, vols. 284–286, pp. 27–38.

    Article  Google Scholar 

  32. J. Wang: Lattice Parameters of Phases in Steels, Ver. 0.7.3., Netherlands Institute for Metals Research, Delft, 2000.

    Google Scholar 

  33. E.O. Hall: Proc. Phys. Soc. Ser., 1951, vol. B64, pp. 747–53.

    Article  CAS  Google Scholar 

  34. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  35. L. Kaufman and M. Cohen: Prog. J. Met. Phys., 1958, vol. 7, pp. 165–246.

    Article  CAS  Google Scholar 

  36. X.Q. Zhao and Y.F. Han: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 884–87.

    Article  CAS  Google Scholar 

  37. A.K. Jena and M.C. Chaturvedi: Phase Transformation in Materials, A Simon & Schuster Company, NJ, 1992.

    Google Scholar 

  38. J.R.C. Guimaraes and J.C. Gomes: Metall. Trans. A, 1979, vol. 10A, pp. 109–12.

    CAS  Google Scholar 

  39. R. Datta and V. Raghavan: Mater. Sci. Eng., 1982, vol. 55, pp. 239–46.

    Article  CAS  Google Scholar 

  40. G. Ghosh and V. Raghavan: Mater. Sci. Eng., 1986, vol. 79, pp. 223–31.

    Article  CAS  Google Scholar 

  41. V. Raghavan: in Martensite: a Tribute to Morris Cohen, G.B. Olson, W.S. Owen, and M. Cohen, eds., ASM, Metals Park, OH, 1992, pp. 197–225.

    Google Scholar 

  42. M. Grujicio and Y. Zhang: J. Mater. Sci., 2000, vol. 35, pp. 4635–47.

    Article  Google Scholar 

  43. W.Y.C. Chen and P.G. Winchell: Metall. Trans. A, 1976, vol. 7A, pp. 1177–82.

    CAS  Google Scholar 

  44. W.Y.C. Chen, E.N. Jones, and P.G. Winchell: Metall. Trans. A, 1978, vol. 9A, pp. 1659–61.

    CAS  Google Scholar 

  45. J.W. Christian: Martensite: Fundamentals and Technology, E.R. Petty, ed., Longman, London, 1970, pp. 11–42.

    Google Scholar 

  46. D. Turnbull and B. Vonnegut: I & E Chem., 1952, vol. 44, p. 1292.

    Article  CAS  Google Scholar 

  47. V. Raghavan and A.R. Entwisle: Physical Properties of Martensite and Bainite, ISI, London, 1965, pp. 29–37.

    Google Scholar 

  48. H.S. Fang, J. Wang, Z.G. Yang, C.M. Li, and Y.K. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1533–43.

    Google Scholar 

  49. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  Google Scholar 

  50. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  51. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    CAS  Google Scholar 

  52. C.Y. Kung and J.J. Rayment: Metall. Trans. A, 1982, vol. 13A, pp. 328–31.

    CAS  Google Scholar 

  53. P. Payson and H. Savage: Trans. ASM, 1944, vol. 33, pp. 261–80.

    Google Scholar 

  54. M.J. Bibby and J.G. Parr: J. Iron Steel Inst., 1964, vol. 202, pp. 100–04.

    CAS  Google Scholar 

  55. A.B. Greninger: Trans. ASM, 1942, vol. 30, pp. 1–26.

    CAS  Google Scholar 

  56. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3361–70.

    Article  CAS  Google Scholar 

  57. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3371–79.

    Article  CAS  Google Scholar 

  58. J.C. Fisher, J.H. Hollomon, and D. Turnbull: J. Appl. Phys., 1948, vol. 19, pp. 775–84.

    Article  CAS  Google Scholar 

  59. J.C. Fisher: Trans. AIME, 1949, vol. 185, pp. 688–90.

    Google Scholar 

  60. C. Zener: J. Appl. Phys., 1949, vol. 20, p. 950.

    Article  CAS  Google Scholar 

  61. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1915–23.

    CAS  Google Scholar 

  62. J.W. Cahn and F. Larch: Acta Metall., 1984, vol. 32, pp. 1915–23.

    Article  CAS  Google Scholar 

  63. J.S. Bowles and J.K. Mackenzie: Acta Metall., 1954, vol. 2, pp. 127–37.

    Google Scholar 

  64. M.S. Wechsler, D.S. Lieberman, and T.A. Read: Trans. AIME, 1953, vol. 197, pp. 1503–15.

    Google Scholar 

  65. D.K. Felbeck and A.G. Atkins: Strength and Fracture of Engineering Solids, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984.

    Google Scholar 

  66. Z. Nishiyama: Martensitic Transformation, Academic Press, New York, NY, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Van Der Zwaag, S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel. Metall Mater Trans A 32, 1527–1539 (2001). https://doi.org/10.1007/s11661-001-0240-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0240-5

Keywords

Navigation