Skip to main content

Advertisement

Log in

Differential scanning calorimetry study and computer modeling of βα phase transformation in a Ti-6Al-4V alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the βα transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling-transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson-Mehl-Avrami (JMA) theory and by applying the “concept of additivity.” The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the βα transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994.

    Google Scholar 

  2. R.A. Wood and R.J. Favor: Titanium Alloys Handbook, Metals and Ceramics Information Center, Batella Publ. No. MCIC-HB02, OH, 1972.

  3. Titanium ’95: Science and Technology, Proc. 8th World Conf. on Titanium, Birmingham, United Kingdom, Oct. 22–26, 1995, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996.

    Google Scholar 

  4. Titanium and Titanium Alloys: Scientific and Technological Aspects, Proc. 3rd Int. Conf. on Titanium, Moscow, May 18–21, 1976, J.C. Williams and A.F. Belov, eds., Plenum Press, New York, NY, 1982.

    Google Scholar 

  5. S. Bein and J. Bechet: J. Phys. IV, 1996, vol. 6 (C1), pp. 99–108.

    Google Scholar 

  6. E. Laude, E. Gautier, and S. Denis: Titanium ’95: Science and Technology, Proc. 8th World Conf. on Titanium, Birmingham, United Kingdom, Oct. 22–26, 1995, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 2330–37.

    Google Scholar 

  7. M.P. Jackson, M.J. Starink, and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 264, pp. 26–38.

    Article  Google Scholar 

  8. J. Vazquez, C. Wagner, P. Villares, and R. Jimenez-Garay: Acta Mater., 1996, vol. 44 (12), pp. 4807–13.

    Article  Google Scholar 

  9. A. Borrego and G. Gonzalez-Doncel: Mater. Sci. Eng. A, 1998, vol. 245, pp. 10–18.

    Article  Google Scholar 

  10. J. Vazquez, P. Villares, and R. Jimenez-Garay: J. Alloys Compounds, 1997, vol. 257, pp. 259–65.

    Article  CAS  Google Scholar 

  11. A. Borrego and G. Gonzalez-Doncel: Mater. Sci. Eng. A, 1998, vol. 252, pp. 149–52.

    Article  Google Scholar 

  12. M.P. Trujillo, A. Orozco, M. Casas-Ruiz, R.A. Ligero, and R. Jimenez-Garay: Mater. Lett., 1995, vol. 24, pp. 287–90.

    Article  CAS  Google Scholar 

  13. R. Benedictus, A. Bottger, and E.J. Mittemeijer: Z. Metallkd., 1998, vol. 89, pp. 168–76.

    CAS  Google Scholar 

  14. J.A. Augus and J.E. Bennett: J. Thermal Analysis, 1978, vol. 13, pp. 283–92.

    Article  Google Scholar 

  15. M. Avrami: J. Chem. Phys., 1939, vol. 7, p. 1103.

    Article  CAS  Google Scholar 

  16. M. Avrami: J. Chem. Phys., 1940, vol. 8, p. 212.

    Article  CAS  Google Scholar 

  17. M. Avrami: J. Chem. Phys., 1941, vol. 9, p. 177.

    Article  CAS  Google Scholar 

  18. W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Min. Metall. Eng., 1939, vol. 135, p. 416.

    Google Scholar 

  19. W. Sha and Z. Guo: J. Alloys and Compounds, 1999, vol. 290, p. L3-L7.

    Article  CAS  Google Scholar 

  20. J. Sieniawski, R. Filip, W. Ziaja, and F. Grosman: Titanium ’95: Science and Technology, Proc. 8th World Conf. on Titanium, Birmingham, United Kingdom, Oct. 22–26, 1995, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 1411–18.

    Google Scholar 

  21. E. Scheil: Arch Eisenhuttenwes., 1935, vol. 12, p. 565.

    Google Scholar 

  22. S. Malinov, W. Sha, and Z. Guo: Mater. Sci. Eng. A, 2000, vol. 283, pp. 1–10.

    Article  Google Scholar 

  23. B.D. Cullity: Elements of X-ray Diffraction, Addison-Wesley Series in Metallurgy and Materials, Reading, MA, 1978, pp. 411–13.

    Google Scholar 

  24. E.J. Mittemeijer: J. Mater. Sci., 1992, vol. 27, pp. 3977–87.

    Article  CAS  Google Scholar 

  25. J.S. Jones and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2005–13.

    Article  CAS  Google Scholar 

  26. W. Sha and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1997, vol. 223, pp. 91–98.

    Article  Google Scholar 

  27. J.W. Christian: The Theory of Transformation in Metals and Alloys: Equilibrium and General Kinetic Theory, 2nd ed., Pergamon, Oxford, United Kingdom, 1975, pp. 418–75.

    Google Scholar 

  28. E.J. Mittemeijer: Max Planck Institute for Metals Research, Stuttgart, Germany, private communication. 1999.

  29. J.W. Christian: The Theory of Transformation in Metals and Alloys: Equilibrium and General Kinetic Theory, 2nd ed., Pergamon, Oxford, United Kingdom, 1975, pp. 542–46.

    Google Scholar 

  30. J.W. Cahn: Acta Metall., 1956, vol. 4, p. 449.

    Article  CAS  Google Scholar 

  31. J.W. Cahn: Acta Metall., 1956, vol. 4, p. 572.

    Article  CAS  Google Scholar 

  32. M. Lusk and Herng-Jeng Jou: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 287–91.

    Article  CAS  Google Scholar 

  33. D. Homberg: Acta. Mater., 1996, vol. 44, pp. 4375–85.

    Article  Google Scholar 

  34. F.J. Gil and J.A. Planell: Scripta Metall. Mater., 1991, vol. 25, pp. 2843–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinov, S., Guo, Z., Sha, W. et al. Differential scanning calorimetry study and computer modeling of βα phase transformation in a Ti-6Al-4V alloy. Metall Mater Trans A 32, 879–887 (2001). https://doi.org/10.1007/s11661-001-0345-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0345-x

Keywords

Navigation