Skip to main content
Log in

Modeling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present article is concerened with the theoretical and experimental study of the growth kinetics of allotriomorphic ferrite in medium carbon vanadium-titanium microalloyed steel. A theoretical model is presented in this work to calculate the evolution of austente-to-allotriomorphic ferrite transformation with time at a very wide temperature range. At temperatures above eutectoid temperature, where allotriomorphic ferrite is the only austenite transormation product, thesoft-impingement effect should be taken into account in the modeling. In that case, the Gilmouret al., analysis reliably predicts the progress of austenite-to-allotriomorphic ferrite transformation in this steel. By contrast, since pearlite acts as a carbon sink, the carbon enrichment of austenite due to the previous ferrite formation is avoided, and carbon concentration in austenite far from the α/λ interface remains the same as the overal carbon content of the steel. Hence, the soft-impingement effect should be neglected, and allotriomorphic ferrite is considered to grow under a parabolic law. Therefore, assumption of a semi-infinite extent austenite with constant boundary conditions is suitable for the kinetics of the isothermal decomposition of austenite. An excellent agreement (higher than 93 pct inR 2) has been obtained between the experimental and predicted values of the volume fraction of ferrite in all of the ranges of temperature studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.I. Aaronson:Symp. on the Mechanism of Phase Transformations in Metals, Institute of Metals, London, 1955, p. 47.

  2. C.A. Dube, H.I. Aaronson, and R.F. Mehl:Rev. Metall.. 1958, vol. 3, pp. 201–10.

    Google Scholar 

  3. J.W. Christian:Theory of Phase Transformation and Alloys, 2nd ed., Pergamon Press, Oxford, United Kingdom, 1975, Part 1, p. 10.

    Google Scholar 

  4. H.K.D.H. Bhadeshia: inMathematical Modelling of Weld Phenomena III, H. Cerjak and H.K.D.H. Bhadeshia, eds., Institute of Materials, London, 1996, pp. 1–50.

    Google Scholar 

  5. H.K.D.H. Bhadeshia, L.-E. Svensson, and B. Gretoft:Proc. Conf. on Welding Metallurgy of Structural Steels, J.Y. Koo, ed., TMS-AIME, Warrendale, PA, 1987, pp. 517–30.

    Google Scholar 

  6. G.P. Krielaart, M. Onik, C. M. Brakman, F. D. Tichelaar, E. J. Mittemeijer, and S. van der Zwaag:Z. Metallkd., 1994, vol. 84, pp. 756–65.

    Google Scholar 

  7. M. Unemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanaba, N. Nakajima, G. Anan, and Y. Higo:Iron Steel Inst. Jpn. Int.. 1992, vol. 32, pp. 306–15.

    Google Scholar 

  8. J.W. Cahn:Acta Metall., 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  9. M. Hillert, and L.I. Staffanson:Acta Chem. Scand.. 1970, vol. 24, pp. 3618–26.

    Article  CAS  Google Scholar 

  10. K.L. Lee, J.K. Lee, K.B. Kang, and O. Kwon:Iron Steel Inst. Jpn. Int. 1992, vol. 32, pp. 326–34.

    CAS  Google Scholar 

  11. I. Madariaga, I. Gutierrez, C. Garcia de Andres, and C. Capdevila:Scripta Metall. Mater.. 1999, vol. 41, pp. 229–35.

    CAS  Google Scholar 

  12. I. Madariaga, and I. Gutierrez:Acta Mater. 1999, vol. 47, pp. 951–60.

    Article  CAS  Google Scholar 

  13. I. Madariaga, I. Gutiérrez, and J.L. Romero:Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1003–15.

    CAS  Google Scholar 

  14. M.A. Linaza, J.L. Romero, J.M. Rodriguez-Ibabe, and J.J. Urcola:Scripta Metall. 1993, vol. 29, p. 1217.

    Article  CAS  Google Scholar 

  15. I. Madariaga, and I. Gutiérrez:Scripta Metall. Mater. 1997, vol. 37, pp. 1185–92.

    CAS  Google Scholar 

  16. C. García De Andrés, C. Capdevila, and F.G. Caballero:Proc. Congreso Nacional de Tratamientos Térmicosy de Superficie TRATERMAT 98, M. Carsi, F. Penlba, O.A. Ruano, and B.J. Fernández, CENIMCSIC, Madrid, 1998, p. 135.

    Google Scholar 

  17. H.K.D.H. Bhadeshia:Mater. Sci. Technol.. 1985, vol. 1, p. 497.

    CAS  Google Scholar 

  18. S.S. Babu, H.K.D.H. Bhadeshia and L.-E. Svensson:J. Mater. Sci. Lett.. 1991, vol. 10, p. 142.

    Article  CAS  Google Scholar 

  19. S.S. Babu, and H.K.D.H. Bhadeshia:Mater. Sci. Technol.. 1990, vol. 6, p. 1005.

    CAS  Google Scholar 

  20. C. García de Andrés, C. Capdevila, and F.G. Caballero, and H.K.D.H. Bhadeshia:Scripta Mater., 1998, vol. 39, pp. 853–59.

    Article  Google Scholar 

  21. C. García de Andrés, G. Caruana, and L.F. Alvarez:Mater. Sci. Eng., 1998, vol. A241, p. 211.

    Article  Google Scholar 

  22. J. Bardford, and W.S. Owen:J. Iron Steel Inst.. 1961, vol. 197, p. 146.

    Google Scholar 

  23. A.K. Sinha:Ferrous Physical Metallurgy, Butterworths, Boston, MA, 1989, p. 379.

    Google Scholar 

  24. K.C. Russell:Acta Metall.. 1968, vol. 16, p. 761.

    Article  CAS  Google Scholar 

  25. H.K.D.H. Bhadeshia:Met. Sci.. 1982, vol. 16, p. 159.

    Article  CAS  Google Scholar 

  26. G. F. Vander Voort:Metallography. Principles and Practice, McGraw-Hill, New York, NY, 1984, p. 27.

    Google Scholar 

  27. C. García, L.F. Alvarez, and M. Carsí:Weld. Int.. 1982, vol. 6, p. 612.

    Article  Google Scholar 

  28. W.F. Lange, M. Enomoto, and H.I. Aaronson:Metall. Trans. A. 1988, vol. 19A, pp. 427–40.

    CAS  Google Scholar 

  29. R.H. Siller, and R.B. McLellan:Metall. Trans. A, 1970, vol. 1, pp. 985–88.

    CAS  Google Scholar 

  30. H.K.D.H. Bhadeshia:Met. Sci., 1981, vol. 15, p. 477.

    Article  CAS  Google Scholar 

  31. S.M. Hodson:MTDATA—Metallurgical and Thermomechanical Data-bank, National Physical Laboratory, Teddington, United Kingdom, 1989, p. 1.

    Google Scholar 

  32. H.K.D.H. Bhadeshia:Materials Algorithms Project (MAP), URL: www.msm.cam.ac.uk/map/steel/subs/ferr-b.html.

  33. N. Ridley, H. Stuart, and L. Zwell:Trans. AIME, 1969, vol. 245, p. 1834.

    CAS  Google Scholar 

  34. D.J. Dyson, and B. Holmes:J. Iron Steel. Inst., 1970, vol. 208, p. 469.

    CAS  Google Scholar 

  35. N.A. Gjostein, H.A. Domian, H.I. Aaronson, and E. Eichen:Acta Metall., 1966, vol. 14, p. 1637.

    Article  CAS  Google Scholar 

  36. R.W.K. Honeycombe, and H.K.D.H. Bhadeshia:Steels: Microstructure and Properties, Edward Arnold, London, 1995, p. 5.

    Google Scholar 

  37. C. Atkinson, H.B. Aaron, K.R. Kinsman, and H.I. Aaronson:Metall. Trans. A.. 1973, vol. 4, pp. 783–92.

    Article  CAS  Google Scholar 

  38. C. Zener:J. Appl. Phys.. 1949, vol. 20, p. 950.

    Article  CAS  Google Scholar 

  39. J.W. Christian:Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon, Oxford, United Kingdom, 1975, Part I, p. 482.

    Google Scholar 

  40. H.K.D.H. Bhadeshia:Progr. Mater. Sci.. 1985, vol. 29,. p. 321.

    Article  CAS  Google Scholar 

  41. G.J. Shiflet, J.R. Bradley, and H.I. Aaronson:Metall. Trans. A.. 1978, vol. 9A, pp. 999–1008.

    CAS  Google Scholar 

  42. J.B. Gilmour, G.R. Purdy, and J.S. Kirkaldy:Metall. Trans. A, 1972, vol. 3, pp. 3213–22.

    Article  CAS  Google Scholar 

  43. C. Capdevila, C. Garcia de Andres, and H.K.D.H. Bhadeshia:Materials Algorithms Project (MAP), URL: www.msm.cam.ac.uk/map/steel/programs/ferr-b.html.

  44. R.C. Reed, and H.K.D.H. Bhadeshia:Mater. Sci. Technol.. 1992, vol. 8, p. 421.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

C. CAPDEVILA, Research Associate, formerly with the Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalurgicas (CENIM), Consejo Superior de Investigaciones Cientificas (CSIC), 28040 Madrid, Spain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capdevila, C., Caballero, F.G. & García de Andrés, C. Modeling of kinetics of austenite-to-allotriomorphic ferrite transformation in 0.37C-1.45Mn-0.11V microalloyed steel. Metall Mater Trans A 32, 661–669 (2001). https://doi.org/10.1007/s11661-001-1001-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-1001-1

Keywords

Navigation