Skip to main content

Advertisement

Log in

Texture, strain, and phase-fraction measurements during mechanical cycling in superelastic NiTi

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Superelastic NiTi was subjected to simultaneous neutron diffraction and uniaxial compressive cycling between 10 and 980 MPa. The objective was anin-situ investigation of the evolution of the stress-induced, reversible transformation between austenite and martensite, to determine the cause of the changes in the macroscopic stress-strain response with cycling. Rietveld refinement was used to analyze the neutron spectra and quantify the phase fraction, texture, and elastic strain. The average phase strain in the mechanically loaded austenite (at a given stress) remained unaltered during the 100 load-unload cycles. However, differences in both the volume fraction and texture of austenite and martensite were noted as cycling progressed, suggesting that these factors are responsible for the changes in the macroscopic stress-strain response of NiTi with mechanical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shape Memory Alloys, H. Funakubo, ed, Gordon and Breach, New York, NY, 1987.

    Google Scholar 

  2. Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stoeckel, and C.M. Wayman, eds., Butterworth-Heinemann, London, 1990.

    Google Scholar 

  3. Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  4. K.N. Melton and O. Mercier:Acta Metall., 1979, vol. 27, pp. 137–44.

    Article  CAS  Google Scholar 

  5. S. Miyazaki, T. Imai, K. Otsuka, and Y. Suzuki:Scripta Metall., 1981, vol. 15, pp. 853–56.

    Article  CAS  Google Scholar 

  6. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka:Metall. Trans. A, 1986, vol. 17A, pp. 115–20.

    CAS  Google Scholar 

  7. M. Kawaguchi, Y. Ohashi, and H. Tobushi:JSME Int. J., 1991, vol. 34, pp. 76–82.

    CAS  Google Scholar 

  8. H. Tobushi, H. Iwanaga, K. Tanaka, T. Hori, and T. Sawada:JSME Int. J., 1992, vol. 35, pp. 271–77.

    CAS  Google Scholar 

  9. N. Hagemeister, L.H. Yahia, C. Armand, and T. Lours:1st Int. Conf. on Shape Memory and Superelastic Technologies, Pacific Grove, CA, 1994, pp. 395–400.

  10. B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, and T. Ishihara:Mater. Sci. Eng. A, 1995, vol. A203, pp. 187–96.

    Article  Google Scholar 

  11. B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, and S. Miyazaki:Mater. Sci. Eng. A, 1995, vol. A202, pp. 148–56.

    Article  Google Scholar 

  12. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand:J. Appl. Phys., 1999, vol. 86, pp. 3020–29.

    Article  CAS  Google Scholar 

  13. M.A.M. Bourke, R. Vaidyanathan, and D.C. Dunand:Appl. Phys. Lett., 1996, vol. 69, pp. 2477–79.

    Article  CAS  Google Scholar 

  14. Y.C. Shu and K. Bhattacharya:Acta Mater., 1998, vol. 46, pp. 5457–73.

    Article  CAS  Google Scholar 

  15. K. Gall, H. Sehitoglu, Y.I. Chumlyakov, and I.V. Kireeva:Acta Mater., 1999, vol. 47, pp. 1203–17.

    Article  CAS  Google Scholar 

  16. M.A.M. Bourke, J.A. Goldstone, and T.M. Holden: inMeasurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, eds., Kluwer Academic, Dordrecht, Netherlands, 1992, pp. 369–82.

    Google Scholar 

  17. N. Shi, M.A.M. Bourke, J.A. Roberts, and J.E. Allison:Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2741–53.

    Article  CAS  Google Scholar 

  18. R. Vaidyanathan: Ph.D. Thesis, massachusetts Institute of Technology, Cambridge, MA, 1999.

  19. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand:Acta Mater., 1999, vol. 47, pp. 3353–66.

    Article  CAS  Google Scholar 

  20. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand:Mater. Sci. Eng. A, 1999, vols A273-A275, pp. 404–09.

    Article  Google Scholar 

  21. H.M. Rietveld:J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  22. A.C. Larson and R.B. VonDreele: Report No. LAUR 8-748, Los Alamos National Laboratory, Los Alamos, NM, 1986.

    Google Scholar 

  23. R.B. VonDreele:J. Appl. Cryst., 1997, vol. 30, pp. 517–25.

    Article  CAS  Google Scholar 

  24. H.J. Bunge:Texture Analysis in Materials Science, Butterworth-Heinemann, London, 1982.

    Google Scholar 

  25. K.L. Fukami-Ushiro and D.C. Dunand:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 183–91.

    Article  CAS  Google Scholar 

  26. E.F. Sturcken and J.W. Croach:Trans. TMS-AIME, 1963, vol. 227, pp. 934–40.

    CAS  Google Scholar 

  27. Y. Liu, I. Houver, H. Xiang, L. Bataillard, and S. Miyazaki:Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1275–82.

    Article  CAS  Google Scholar 

  28. T. Saburi and S. Nenno: inSolid-Solid Phase Transformations, H.I. Aaronson, ed., TMS-AIME, Warrendale, PA, 1981, pp. 1455–79.

    Google Scholar 

  29. D.C. Dunand, D. Mari, M.A.M. Bourke, and J.A. Roberts:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2820–36.

    Article  CAS  Google Scholar 

  30. R. Plietsch and K. Ehrlich:Acta Mater., 1997, vol. 45, pp. 2417–24.

    Article  CAS  Google Scholar 

  31. M.R. Daymond, M.A.M. Bourke, and R.B.V. Dreele:J. Appl. Phys., 1997, vol. 82, pp. 1554–62.

    Article  CAS  Google Scholar 

  32. R. Vaidyanathan, U. Ramamurty, and D.C. Dunand:Mater. Sci Eng. A, 2000, vol. A289 (1–2), pp. 208–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

R. VAIDYANATHAN, formerly Postdoctoral Associate, Laboratory for Experimental and Computational Micromechanics, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidyanathan, R., Bourke, M.A.M. & Dunand, D.C. Texture, strain, and phase-fraction measurements during mechanical cycling in superelastic NiTi. Metall Mater Trans A 32, 777–786 (2001). https://doi.org/10.1007/s11661-001-1012-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-1012-y

Keywords

Navigation