Skip to main content
Log in

An integrated computer model with applications for austenite-to-ferrite transformation during hot deformation of Nb-microalloyed steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work presents an austenite decomposition model, based on the thermodynamics of the system and diffusion-controlled nucleation theory, to predict the evolution of microstructure during hot working of niobium-microalloyed steels. The differences in microstructural development of hotdeformed microalloyed steel in the single-phase austenite and two-phase (austenite + ferrite) regions have been effectively described using an integrated computer modeling process. The complete model presented here takes into account the kinetics of recrystallization, recrystallized austenite grain size, precipitation, phase transformation, and the resulting ferrite structure. After considering existing austenite decomposition models, we decided that the method adopted in the present work relies on isothermal transformation kinetics and the principle-of-additivity rule. The thermomechanical part of the modeling process was carried out using the finite-element method. Experimental results at different temperatures, strain rates, and strain levels were obtained using a Gleeble thermomechanical simulator. A comparison of results of the model with experiments shows good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Sellars and J.H. Beynon: in High Strength Low Alloy Steels, D.P. Dunne and T. Chandra, eds., University of Wollongong, Wollongong, NSW, 1984, pp. 142–50.

    Google Scholar 

  2. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, pp. 2791–2805.

    CAS  Google Scholar 

  3. J.S. Kirkaldy: Metall. Trans., 1973, vol. 4, pp. 2327–33.

    CAS  Google Scholar 

  4. M. Suehiro, H. Yada, T. Senuma, and K. Sato: Proc. Int. Conf. Mathematical Modeling of Hot Rolling of Steel, S. Yue, ed., CIMM, Hamilton, 1990, pp. 128–37.

    Google Scholar 

  5. M. Suehiro, T. Senuma, and H. Yada: Tetsu-to-Hagane, 1987, vol. 73, pp. 1026–32.

    CAS  Google Scholar 

  6. T. Senuma, M. Suehiro, and H. Yada: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (3), pp. 423–32.

    CAS  Google Scholar 

  7. S. Torizuka, N. Ohkouchi, T. Minote, M. Niikura, and C. Ouchi: Thermomechanical Processing in Theory, Modelling & Practice, B. Hutchinson, M. Andersson, G. Engberg, B. Karlsson, and T. Siwecki, eds., Sweden, 1996, pp. 227–39.

  8. Yoshie, M. Fujioka, Y. Watanabe, K. Nishioka, and H. Morikawa: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (3), pp. 395–404.

    CAS  Google Scholar 

  9. P. Choquet, P. Fareque, J. Giusti, B. Chamont, J.N. Pezant, and F. Blanchet: Mathematical Modeling of Hot Rolling of Steel, S. Yue, ed., CIMM, Hamilton, Canada, 1990, pp. 34–44.

    Google Scholar 

  10. S. Kamamoto, T. Nishimori, and S. Kinoshita: Mater. Sci. Technol., 1985, vol. 1, pp. 798–804.

    Google Scholar 

  11. I. Boyadjiev, P.F. Thomson, and Y.C. Lam: THERMEC 97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 2023–29.

    Google Scholar 

  12. I. Boyadjiev, P.F. Thomson, and Y.C. Lam: Iron Steel Inst. Jpn. Int., 1996, vol. 36 (11), pp. 1413–19.

    CAS  Google Scholar 

  13. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajjima, G. Anan, and Y. Higo: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (3), pp. 306–15.

    CAS  Google Scholar 

  14. M. Umemoto: Proc. Int. Symp. Mathematical Modeling of Hot Rolling of Steel, S. Yue, ed., CIMM, Hamilton, 1990, pp. 404–12.

    Google Scholar 

  15. M. Umemoto, N. Komatsubara, and I. Tamura: J. Heat Treating, vol. 1, 1980, pp. 57–64.

    CAS  Google Scholar 

  16. C. Ouchi, T. Sampei, and I. Kozasu: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 214–22.

    Google Scholar 

  17. M. Piette and C. Perdrix: Mater. Sci. Forum, 1998, vol. 284–86, 361–68.

    Article  Google Scholar 

  18. J. Majta, A.K. Zurek, and M. Pietrzyk: Recrystallization ’99, JIMIS-10, Tsukuba Science City, Japan, 1999, pp. 691–96.

    Google Scholar 

  19. T. Tanaka: Int. Met. Rev., 1981, vol. 4, pp. 185–212.

    Google Scholar 

  20. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997.

    Google Scholar 

  21. J.L. Lee, C.C. Yang, and I.C. Hsuan: THERMEC 97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 451–57.

    Google Scholar 

  22. M. Militzer, W.P. Sun, W.J. Poole, and P. Purtscher: THERMEC 97, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 2093–99.

    Google Scholar 

  23. T. Tanaka and N. Tabata: Tetsu-to-Hagane, 1978, vol. 64, pp. 1353–62.

    CAS  Google Scholar 

  24. J. Majta, A.K. Zurek, and M. Pietrzyk: J. Phys. IV France, 1997, vol. 7 (C3), pp. 397–402.

    Google Scholar 

  25. A.K. Zurek and J. Majta: 7th Int. Symp. on Plasticity and Current Applications, Cancun, Mexico, 1999, pp. 659–62.

  26. M. Umemoto, N. Komatsubara, and I. Tamura: J. Heat Treating, 1980, vol. 1 (3), pp. 57–64.

    CAS  Google Scholar 

  27. M. Umemoto, K. Horiuchi, and I. Tamura: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 854–61.

    Google Scholar 

  28. J.W. Cahn and W.C. Hagel: Acta Metall., 1963, vol. 11, p. 561.

    Article  CAS  Google Scholar 

  29. I. Tamura: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 763–79.

    CAS  Google Scholar 

  30. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, pp. 2791–805.

    CAS  Google Scholar 

  31. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1991, vol. 22A, pp. 2779–90.

    CAS  Google Scholar 

  32. M.B. Kuban, R. Jayaraman, E.B. Hawbolt, and J.K. Brimacombe: Metall. Trans. A, 1986, vol. 17A, pp. 1493–1503.

    CAS  Google Scholar 

  33. E.B. Hawbolt, B. Chau, and J.K. Brimacombe: Metall. Trans. A, 1985, vol. 16A, pp. 565–78.

    CAS  Google Scholar 

  34. J.W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1965, vol. 21, pp. 471–95.

    Google Scholar 

  35. J. Majta, J.G. Lenard, and M. Pietrzyk: Metall. Foundry Eng., 1995, vol. 21, pp. 9–37.

    CAS  Google Scholar 

  36. J. Majta, J.G. Lenard, and M. Pietrzyk: Mater. Sci. Eng., 1996, vol. 208, pp. 249–59.

    Article  Google Scholar 

  37. I.A. Wierszyllowski: Metall. Trans. A, 1991, vol. 22A, pp. 993–99.

    CAS  Google Scholar 

  38. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.

    Google Scholar 

  39. J.J. Eber and W. Bleck: Proc. Modeling of Metal Rolling Processes, J.H. Beynon, P. Ingham, H. Teichert, and K. Waterson, eds., The Institute of Materials, London, 1996, pp. 185–90.

    Google Scholar 

  40. G.P. Krielaart, C.M. Brakman, and S. Van der Zwaag: J. Mater. Sci., 1996, vol. 31, pp. 1501–08.

    Article  CAS  Google Scholar 

  41. C.H. Lee and S. Kobayashi: ASME, J. Eng. Ind., 1973, vol. 95, pp. 63–78.

    Google Scholar 

  42. M. Pietrzyk and J.G. Lenard: Thermal Mechanical Modeling of the Flat Rolling Process, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  43. J. Majta, R. Kuziak, and M. Pietrzyk: J. Mater. Processing Technol., 1998, vol. 80–81, 524–30.

    Article  Google Scholar 

  44. A.K. Zurek, J. Majta, and M. Pietryzk: 39th Mechanical Working and Steel Processing Conf., Conf. Proc. ISS, (ISS, Indianapolis, IN, 1998), vol. XXXV, pp. 577–82.

    Google Scholar 

  45. J. Majta, M. Pietrzyk, J.G. Lenard, and J. Jansen: 37th Mechanical Working and Steel Processing Conf., ISS, Hamilton, Canada, 1995, vol. XXXIII, pp. 89–99.

    Google Scholar 

  46. J. Majta, P. Munther, J.G. Lenard, Z. Kedzierski, and M. Pietrzyk: 5th ICTP, Columbus, Ohio, USA, 1996, pp. 19–22.

  47. K.J. Lee, K.B. Kang, J.K. Lee, O. Kwon, and R.W. Chang: Proc. Int. Symp. Mathematical Modeling of Hot Rolling of Steel, S. Yue, ed., CIMM, Hamilton, Canada, 1990, pp. 435–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majta, J., Pietrzyk, M., Zurek, A.K. et al. An integrated computer model with applications for austenite-to-ferrite transformation during hot deformation of Nb-microalloyed steels. Metall Mater Trans A 33, 1509–1520 (2002). https://doi.org/10.1007/s11661-002-0073-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0073-x

Keywords

Navigation