Skip to main content
Log in

Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The constitutive relationships between stress, strain rate, and temperature were analyzed to obtain a unified description of creep and plasticity of aluminum alloys produced by powder metallurgy and of aluminum-based metal-matrix composites. As both classes of materials are characterized by the existence of a threshold stress (σ 0), a unified description of creep (low strain-rate regime) and plasticity (high strain-rate regime) was obtained by substituting the conventional power-law equation with the sinh relationship, where the applied stress is replaced by the difference between the applied stress and a threshold stress. The stress exponent was n = 3 or 5, and the activation energy was equivalent to the activation energy for self-diffusion or to the activation energy for diffusion of solute elements in the matrix. The model was applied to an unreinforced alloy (2014PM) and a composite (6061 + 20 pct Al2O3) tested in tension (under constant load) or torsion (at constant strain rate) in the temperature range between 300 °C and 500 °C. The results were compared with data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.J. McQueen and J.J. Jonas: in Metal Forming: Interrelation between Theory and Practice, A.L. Hoffmanner, ed., Plenum Publ. Corp., New York, NY, 1971, pp. 393–428.

    Google Scholar 

  2. H.J. McQueen and J.J. Jonas: Man. Eng. Trans. (SME), 1973, vol. 2, pp. 209–33.

    Google Scholar 

  3. H.J. McQueen, E. Evangelista, N. Jin, and M.E. Kassner: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1757–66.

    CAS  Google Scholar 

  4. H.J. McQueen, E. Evangelista, and M.E. Kassner: Z. Metallkd., 1995, vol. 82, pp. 336–45.

    Google Scholar 

  5. E. Evangelista, F. Gabrielli, P. Mengucci, and E. Quadrini: in Strength of Metals and Alloys, P.O. Kettuen, T.K. Lepisto, and M.E. Lehtonen, eds., Pergamon Press, Oxford, United Kingdom, 1988, pp. 977–82.

    Google Scholar 

  6. E. Cerri, E. Evangelista, A. Forcellese, P. Fiorini and J. Stobrawa: in Strength of Metals and Alloys, H. Oikawa et al., eds., The Japan Institute of Metals, Tokyo, 1994, pp. 807–10.

    Google Scholar 

  7. E. Evangelista, E. DiRusso, H.J. McQueen, and P. Mengucci: in Homogeneization and Annealing of Aluminum and Copper Alloys, H.D. Merchant, J. Crane, and E.H. Chia, eds., TMS, Warrendale, PA, 1988, pp. 209–26.

    Google Scholar 

  8. H.J. McQueen: in Hot Deformation of Aluminum Alloys, T.G. Langdon, H.D. Merchant, J.G. Morris, and M.A. Zaidi, eds., TMS, Warrendale, PA, 1991, pp. 31–52.

    Google Scholar 

  9. H.J. McQueen: in Hot Deformation of Aluminum Alloys, T.G. Langdon, H.D. Merchant, J.G. Morris, and M.A. Zaidi, eds., TMS, Warrendale, PA, 1991, pp. 105–20.

    Google Scholar 

  10. H.J. McQueen and K. Conrad: in Microstructural Control in Al. Alloy Processing, H. Chin and H.J. McQueen, eds., TMS-AIME, Warrendale, PA, 1986, pp. 197–219.

    Google Scholar 

  11. E. Evangelista, A. Forcellese, F. Gabrielli, and P. Mengucci: in Hot Deformation of Aluminum Alloys, T.G. Langdon, H.D. Merchant, J.G. Morris, and M.A. Zaidi, eds., TMS, Warrendale, PA, 1991, pp. 121–39.

    Google Scholar 

  12. E. Evangelista, H.J. McQueen, and E. Cerri: in Modelling of Plastic Deformation and Its Engineering Applications, S.I. Andersen et al., eds., Risø National Laboratory, Roskilde, Denmark, 1992, pp. 265–70.

    Google Scholar 

  13. L. Blaz and E. Evangelista: Mater. Sci. Eng., 1996, vol. A207, pp. 195–201.

    CAS  Google Scholar 

  14. E.V. Konopleva, H.J. McQueen, and E. Evangelista: Mater. Characterization, 1995, vol. 34, pp. 251–64.

    Article  CAS  Google Scholar 

  15. M.E. Kassner, J. Pollard, E. Evangelista, and E. Cerri: Acta Metall. Mater., 1994, vol. 42, pp. 3223–30.

    Article  CAS  Google Scholar 

  16. E. Cerri, E. Evangelista, A. Forcellese, and H.J. McQueen: Mater. Sci. Eng., 1995, vol. A197, pp. 181–98.

    CAS  Google Scholar 

  17. H.J. McQueen and J.J. Jonas: in Plastic Deformation of Materials, R.J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, pp. 393–493.

    Google Scholar 

  18. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, pp. 1–23.

    CAS  Google Scholar 

  19. J.R. Pickens, T.J. Langan, R.O. England, and M. Liebson: Metall. Trans. A, 1987, vol. 18A, pp. 303–12.

    CAS  Google Scholar 

  20. X. Xia, P. Sakaris, and H.J. McQueen: Mater. Sci. Technol., 1994, vol. 10, pp. 487–96.

    CAS  Google Scholar 

  21. X. Xia, H.J. McQueen, and P. Sakaris: Scripta Metall. Mater., 1995, vol. 32, pp. 1185–90.

    Article  CAS  Google Scholar 

  22. D. Yu and T. Chandra: in Advanced Composites ’93, T. Chandra and A.K. Dhingra, eds., TMS, Warrendale, PA, 1993, pp. 1070–77.

    Google Scholar 

  23. H.J. McQueen, P. Sakaris, and J. Bowles: in Advanced Composites ’93, T. Chandra and A.K. Dhingra, eds., TMS, Warrendale, PA, 1993, pp. 1193–98.

    Google Scholar 

  24. A. Alunni, E. Cerri, E. Evangelista, and A. Forcellese: in Advanced Composites ’93, T. Chandra and A.K. Dhingra, eds., TMS, Warrendale, PA, 1993, pp. 1079–85.

    Google Scholar 

  25. H.J. McQueen, E.V. Konpleva, M. Myshlyaev, and Q. Qin: Proc. 10th Int. Conf. on Composite Materials, A. Poursartip and K. Street, eds., Woodhead Publ. Ltd, Cambridge, United Kingdom, 1995, vol. 2, pp. 423–30.

    Google Scholar 

  26. R. Raj: Metall. Trans. A, 1981, vol. 12A, pp. 1089–97.

    Google Scholar 

  27. Y.V.R.K. Prasad: Ind. J. Technol., 1990, vol. 28, pp. 435–51.

    CAS  Google Scholar 

  28. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM INTERNATIONAL, Metals Park, OH, 1999.

    Google Scholar 

  29. B.V. Radhakrishna Bhat, Y.R. Mahajan, H.M. Roshan, and Y.V.R.K. Prasad: Mater. Sci. Technol., 1995, vol. 11, pp. 167–73.

    Google Scholar 

  30. B.V. Radhakrishna Bhat, Y.R. Mahajan, and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 629–39.

    Article  Google Scholar 

  31. A. Forcellese, F. Gabrielli, S.M. Roberts, and P.J. Withers: Proc. 11th Int. Conference on Composite Materials, Melbourne, Victoria, Australia, M.L. Scott, ed., Australian Composite Structures Society-Woodhead Publ. Ltd., 1997, vol. III, pp. 143–53.

  32. Y. Wang: Mater. Sci. Eng., 1996, vol. A212, pp. 178–81.

    CAS  Google Scholar 

  33. K. Kucharova, A. Orlova, H. Oikawa, and J. Cadek: Mater. Sci. Eng., 1988, vol. A102, pp. 201–09.

    Google Scholar 

  34. R.S. Mishra and A.B. Pandey: Metall. Trans. A, 1990, vol. 21A, pp. 2089–90.

    CAS  Google Scholar 

  35. K.-T. Park, E.J. Lavernia, and F.A. Mohamed: Acta Metall. Mater., 1990, vol. 38, pp. 2149–59.

    Article  CAS  Google Scholar 

  36. F.A. Mohamed, K.-T. Park, and E.J. Lavernia: Mater. Sci. Eng., 1992, vol. A150, pp. 21–35.

    CAS  Google Scholar 

  37. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan: Acta Metall. Mater., 1992, vol. 40, pp. 2045–52.

    Article  CAS  Google Scholar 

  38. G. Gonzalez-Doncel and O.D. Sherby: Acta Metall. Mater., 1993, vol. 41, pp. 2797–2805.

    Article  CAS  Google Scholar 

  39. K.-T. Park and F.A. Mohamed: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3119–30.

    CAS  Google Scholar 

  40. J. Cadek, V. Sustek, and M. Pahutova: Mater. Sci. Eng., 1994, vol. A174, pp. 141–47.

    CAS  Google Scholar 

  41. J. Cadek, H. Oikawa, and V. Sustek: Mater. Sci. Eng., 1995, vol. A190, pp. 9–23.

    CAS  Google Scholar 

  42. J. Cadek, M. Pahutova, and V. Sustek: Mater. Sci. Eng., 1998, vol. A246, pp. 252–68.

    CAS  Google Scholar 

  43. J. Cadek, K. Kucharova, and V. Sustek: Scripta Mater., 1999, vol. 40, pp. 1269–75.

    Article  CAS  Google Scholar 

  44. J. Cadek, K. Kucharova, and S.J. Zhu: Mater. Sci. Eng., 2000, vol. A281, pp. 162–68.

    CAS  Google Scholar 

  45. J. Cadek, K. Kucharova, and S.J. Zhu: Mater. Sci. Eng., 2000, vol. A283, pp. 172–80.

    CAS  Google Scholar 

  46. J. Cadek, K. Kucharova, and S.J. Zhu: Mater. Sci. Eng., 2001, vol. A297, pp. 176–84.

    CAS  Google Scholar 

  47. S.J. Zhu, L.M. Peng, Q. Zhou, Z.Y. Ma, K. Kucharova, and J. Cadek: Mater. Sci. Eng., 2000, vol. A282, pp. 273–84.

    Google Scholar 

  48. Z.Y. Ma and S.C. Tjong: Mater. Sci. Eng., 2000, vol. A278, pp. 5–15.

    CAS  Google Scholar 

  49. W.J. Kim, H. Yeon, D.H. Shin, and S.H. Hong: Mater. Sci. Eng., 1999, vol. A269, pp. 142–51.

    CAS  Google Scholar 

  50. N. Matsuda, J. Akaike, K. Hongo, and K. Matsuura: Mater. Sci. Eng., 1997, vols. A234–A236, pp. 751–54.

    Google Scholar 

  51. A.B. Pandey, R.S. Mishra, A.G. Paradkar, and Y.R. Mahajan: Acta Mater., 1997, vol. 45, pp. 1297–1306.

    Article  CAS  Google Scholar 

  52. Y. Li and F.A. Mohamed: Acta Mater., 1997, vol. 45, pp. 4775–85.

    Article  CAS  Google Scholar 

  53. Y. Li and T.G. Langdon: Scripta Mater., 1997, vol. 36, pp. 1457–60.

    Article  CAS  Google Scholar 

  54. Y. Li and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 4797–4806.

    Article  CAS  Google Scholar 

  55. Y. Li and T.G. Langdon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1271–73.

    Article  CAS  Google Scholar 

  56. Y. Ma and T.G. Langdon: Mater. Sci. Eng., 1997, vol. A230, pp. 183–87.

    CAS  Google Scholar 

  57. Y. Li and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 1143–55.

    Article  CAS  Google Scholar 

  58. Y. Li and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3937–48.

    Article  CAS  Google Scholar 

  59. Y. Li and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A245, pp. 1–9.

    CAS  Google Scholar 

  60. Y. Li and T.G. Langdon: Metall. Trans. A, 1998, vol. 29A, pp. 2523–31.

    Article  CAS  Google Scholar 

  61. Y. Li and T.G. Langdon: Acta Mater., 1999, vol. 47, pp. 3395–403.

    Article  CAS  Google Scholar 

  62. F. Bardi, E. Evangelista, and S. Spigarelli: Proc. 28° Convegno Nazionale AIM, Associazione Nazionale Metallurgia, Milano, Italy, 2000, vol. II, pp. 853–62.

    Google Scholar 

  63. S. Spigarelli, E. Evangelista, E. Cerri, and T.G. Langdon: Mater. Sci. Eng., in press.

  64. E. Cerri, S. Spigarelli, E. Evangelista, and P. Cavaliere: Mater. Sci. Eng., 2001, in press.

  65. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 13, p. 325.

    Google Scholar 

  66. E. Evangelista, S. Spigarelli, F. Bardi, and Mira Vukcevic: Proc. Int. Conf. EUROMAT 2001, in press.

  67. J. Sarkar, Y.V.R.K. Prasad, and M.K. Surappa: J. Mater. Sci., 1995, vol. 30, p. 2483.

    Article  Google Scholar 

  68. B.V. Radhakrishna Bhat, Y.R. Mahajan, H.M. Roshan, and Y.V.R.K. Prasad: Mater. Sci. Eng., 1994, vol. A189, p. 137.

    Google Scholar 

  69. F.A. Mohamed and T.G. Langdon: Metall. Trans., 1974, vol. 5, pp. 2339–45.

    CAS  Google Scholar 

  70. M.E. Kassner and M.-T. Prado: Progr. Mater. Sci., 2000, vol. 45, pp. 1–43.

    Article  CAS  Google Scholar 

  71. K.-T. Park, E.J. Lavernia, and F.H. Mohamed: Acta Metall. Mater., 1994, vol. 42, pp. 667–78.

    Article  CAS  Google Scholar 

  72. S. Spigarelli, M. Cabibbo, E. Evangelista, and T.G. Langdon: in Creep and Fracture of Engineering Materials and Structures, The Institute of Materials, London, 2001, pp. 271–80.

    Google Scholar 

  73. J. Friedel: Dislocations, Pergamon Press, Oxford, United Kingdom, 1964.

    Google Scholar 

  74. S.J. Rothman, N.L. Peterson, L.J. Nowicki, and L.C. Robinson: Phys. Status Solidi (b), 1974, vol. 63, p. K29.

  75. L. Kloc, E. Cerri, S. Spigarelli, E. Evangelista, and T.G. Langdon: Mater. Sci. Eng., 1996, vol. A216, pp. 161–68.

    CAS  Google Scholar 

  76. L. Kloc, S. Spigarelli, E. Cerri, E. Evangelista, and T.G. Langdon: Acta Mater., 1997, vol. 45, pp. 529–40.

    Article  CAS  Google Scholar 

  77. F. Bardi, M. Cabibbo, S. Spigarelli, and E. Evangelista: University of Ancona, unpublished research.

  78. F. Bardi, M. Cabibbo, S. Spigarelli, and E. Evangelista: Mater. Sci. Eng., in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evangelista, E., Spigarelli, S. Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites. Metall Mater Trans A 33, 373–381 (2002). https://doi.org/10.1007/s11661-002-0098-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0098-1

Keywords

Navigation