Skip to main content

Advertisement

Log in

Hydrogen embrittlement of nickel-titanium alloy in biological environment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A nickel-titanium superelastic alloy is susceptible to environmental embrittlement in a corrosive atmosphere. Because a delayed fracture of the alloy is associated with hydrogen absorption and subsequent formation of brittle hydride phases, the diffusion rate of hydrogen is thought to be one of the factors determining its service life. The Ni-Ti alloys subjected to hydrogen charging of 1 or 10 A/m2 for 24 or 120 hours, respectively, were arranged using an electrochemical system. Both the hardness numbers in the cross-sectional area of the alloy and the amount of evolved hydrogen were determined. The fracture surface of the alloys, under tension, was observed using a scanning electron microscope (SEM). Theoretical distributions of the hydrogen concentration were computed for an infinite cylinder model using the differential equation of diffusion. The diffusion constant of hydrogen through the alloy is estimated to be 9×10−15 m2/s, assuming that the hardness is proportional to the concentration of hydride and/or hydrogen. Experimental results of the hardness measurements and fractography support the estimated diffusion constant. The process of fracture formation in a biological corrosive environment was discussed. It was concluded that galvanic currents and fretting corrosion of the alloy might be effective factors in fracture formation during function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Park: The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, FL, IV, pp. 1–8.

  2. J.V. Humbeeck, R. Stalmans, and P.A. Besselink: Metals as Biomaterials, John Wiley & Sons, Ltd., New York, NY, 1988, pp. 73–100.

    Google Scholar 

  3. S.H. Park, A. Llinas, V.K. Goel, and J.C. Keller: The Biomedical Engineering Handbook, 2nd ed., CRC Press, Boca Raton, FL, 2000, vol. 44, pp. 1–35.

    Google Scholar 

  4. S.A. Shabalovskaya: Bio-Med. Mater. Eng., 1996, vol. 6, pp. 267–89.

    CAS  Google Scholar 

  5. G. Rondelli and B. Vicentini: Biomaterials, 1999, vol. 20, pp. 785–92.

    Article  CAS  Google Scholar 

  6. D.J. Wever, A.G. Veldhuizen, M.M. Sanders, J.M. Schakenraad, and J.R. van Horn: Biomaterials, 1997, vol. 18, pp. 1115–20.

    Article  CAS  Google Scholar 

  7. D.J. Wever, A.G. Veldhuizen, J. de Vries, H.J. Busscher, D.R.A. Uges, and J.R. van Horn: Biomaterials, 1998, vol. 19, pp. 761–69.

    Article  CAS  Google Scholar 

  8. J. Ryhanen, E. Niemi, W. Serlo, E. Niemela, P. Sandvik, H. Pernu, and T. Salo: J. Biomed. Mater. Res., 1997, vol. 35, pp. 451–57.

    Article  CAS  Google Scholar 

  9. E.F. Harris, S.M. Newman, and J.A. Nicholson: Am. J. Orthod. Dentofac. Orthop., 1988, vol. 93, pp. 508–13.

    Article  CAS  Google Scholar 

  10. B. Schwaninger, N.K. Sarkar, and B.E. Foster: Am. J. Orthod., 1982, vol. 82, pp. 45–49.

    Article  CAS  Google Scholar 

  11. J.W. Edie, G.F. Andreasen, and M.P. Zaytoun: Angle Orthod., 1981, vol. 51, pp. 319–24.

    CAS  Google Scholar 

  12. J.J. Hudgins, M.D. Bagby, and L.C. Erickson: Angle Orthod., 1990, vol. 60, pp. 283–88.

    CAS  Google Scholar 

  13. K. Yokoyama, K. Hamada, K. Moriyama, and K. Asaoka: Biomaterials, 2001, vol. 22, pp. 2257–62.

    Article  CAS  Google Scholar 

  14. K. Yokoyama, K. Hamada, and K. Asaoka: Mater. Trans., 2001, vol. 42, pp. 141–44.

    Article  CAS  Google Scholar 

  15. C. Siegmund, R. Scbimming, and S. Swaid: J. Oral Maxillofac. Surg., 2000, vol. 58, pp. 909–10.

    Article  CAS  Google Scholar 

  16. D.M. Dall, I.D. Learmonth, M.I. Solomon, A.W. Miles, and J.M. Davenport: J. Bone Joint Surg., 1993, vol. 75-B, pp. 259–65.

    Google Scholar 

  17. M.J. Morgan, D.F. James, and R.M. Pilliar: Int. J. Oral Maxillofac. Implants, 1993, vol. 8, pp. 409–14.

    CAS  Google Scholar 

  18. A. Piattelli, M. Piattelli, A. Scarano, and L. Montesani: Int. J. Oral Maxillofac. Implants, 1998, vol. 13, pp. 561–64.

    CAS  Google Scholar 

  19. S.D. Cook, K.A. Thomas, A.F. Harding, C.L. Collins, R.J. Haddad Jr., M. Milicic, and W.L. Fischer: Biomaterials, 1987, vol. 8, pp. 177–84.

    Article  CAS  Google Scholar 

  20. T.P. Pazoglou and M.T. Hepworth: Trans. TMS-AIME, 1968, vol. 242, pp. 682–85.

    Google Scholar 

  21. M. Nagumo: Mater. Jpn., 1994, vol. 33, pp. 914–21.

    CAS  Google Scholar 

  22. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, 2nd ed., Oxford Press, Norfolk, Great Britain, 1984, pp. 199–200.

    Google Scholar 

  23. D.L. Johnson and H.G. Nelson: Metall. Trans., 1973, vol. 4, pp. 569–73.

    CAS  Google Scholar 

  24. W.R. Holman, R.W. Crawford, and F. Paredes Jr.: Trans. TMS-AIME, 1965, vol. 233, pp. 1836–39.

    CAS  Google Scholar 

  25. H.J. Christ, M. Decker, and S. Zeitler: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1507–17.

    Article  CAS  Google Scholar 

  26. Y. Adachi, N. Wade, and Y. Hosoi: J. Jpn. Inst. Met., 1990 vol. 54, pp. 525–31.

    CAS  Google Scholar 

  27. T. Asaoka, H. Yamashita, H. Saito, and Y. Ishida: J. Jpn. Inst. Met., 1993 vol. 57, pp. 1123–29.

    CAS  Google Scholar 

  28. R.I. Holland: Scan. J. Dent. Res., 1980, vol. 88, pp. 269–72.

    CAS  Google Scholar 

  29. M. Watarai, T. Hanawa, K. Moriyama, and K. Asaoka: Bio-Med. Mater. Eng., 1999, vol. 9, pp. 73–79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asaoka, K., Yokoyama, K. & Nagumo, M. Hydrogen embrittlement of nickel-titanium alloy in biological environment. Metall Mater Trans A 33, 495–501 (2002). https://doi.org/10.1007/s11661-002-0111-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0111-8

Keywords

Navigation