Skip to main content
Log in

Analysis of steady-state thermal creep of Zr-2.5Nb pressure tube material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The steady-state thermal creep rate in the axial and transverse directions of Zr-2.5Nb of pressure tubes, used in CANDU nuclear reactors, was determined. The data were obtained both from tensile samples having their tensile axes cut along the axial and transverse directions of the pressure tubes and from small-sized, thin-walled tubes, i.e., “mini” tubes stressed either in torsion or by internally pressurizing capsules manufactured from the mini tubes, or by additionally applying an external, axial load on these internally pressurized capsules. The temperature range of the data was from 373 to 596 K (100 °C to 323 °C) and the duration of the tests was from about 1500 hours to over 12,000 hours. The tests were carried out over a sufficiently long time for the creep rate to be measurable in the steady-state creep regime. It was found that the steady-state creep rate depends on stress in a nonlinear fashion and the stress exponent over the entire temperature range was about four. This value is consistent with the values measured earlier on other zirconium alloys. The activation energy Q was found to be about 21 and 10 kcal/mol for temperatures above and below 475 K (∼ 200 °C), respectively. These values are lower than those measured by other investigators on the same material at higher temperatures but similar to values found on other Zr alloys at low temperatures. It appears that Q is dependent on temperature and its value is consistent with the presence of dynamic strain aging (DSA). The results of this study were analyzed with a polycrystalline, nonlinear self-consistent model that take into account the crystallographic texture of the material. This model was used to derive the values of critical resolved shear stress (CRSS), which are consistent with prismatic, basal, and pyramidal glide. By using these values and the apparent temperature dependence of Q, it was shown that this model predicts well the steady-state creep rate over the entire temperature range and under very different stress states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Fidleris: J. Nucl. Mater., 1988, vol. 159, pp. 22–42.

    Article  CAS  Google Scholar 

  2. R.A. Holt and R.G. Fleck: Zirconium in the Nuclear Industry: 9th Int. Symp., ASTM-STP-1132, ASTM, Philadelphia, PA, 1990, pp. 218–29.

    Google Scholar 

  3. R.A. Holt, A.R. Causey, and V. Fidleris: Proceedings, British Nuclear Society, London, 1983, pp. 175–78.

    Google Scholar 

  4. A.R. Causey, R.A. Holt, and S.R. MacEwen: Zirconium in the Nuclear Industry: 6th Int. Symp., ASTM-STP-824, ASTM, Philadelphia, PA, 1984, pp. 269–88.

    Google Scholar 

  5. R.A. Holt, M. Griffiths, and R.W. Gilbert: J. Nucl. Mater., 1987, vol. 149, pp. 51–56.

    Article  CAS  Google Scholar 

  6. M. Griffiths: J. Nucl. Mater., 1988, vol. 159, pp. 190–218.

    Article  CAS  Google Scholar 

  7. M. Griffiths, W. Phythian, and S. Dumbill: J. Nucl. Mater., 1993, vol. 207, pp. 353–56.

    Article  CAS  Google Scholar 

  8. M. Griffiths, J.F. Mecke, and J.E. Winegar: Zirconium in the Nuclear Industry: 11th Int. Symp., ASTM-STP-1295, ASTM, West Conshohocken, PA, 1996, pp. 580–602.

    Google Scholar 

  9. R.G. Fleck, E.G. Price, and B.A. Cheadle: Zirconium in the Nuclear Industry: 6th Int. Symp., ASTM-STP-824, ASTM, Philadelphia, PA, 1984, pp. 88–105.

    Google Scholar 

  10. J.D. Parker, V. Perovic, M. Leger, and R.G. Fleck: Zirconium in the Nuclear Industry: 7th Int. Symp., ASTM-STP-939, ASTM, Philadelphia, PA, 1987, pp. 86–100.

    Google Scholar 

  11. D.D. Himbeault, C.K. Chow, and M.P. Puls: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 135–45.

    CAS  Google Scholar 

  12. C.K. Chow, C.E. Coleman, M.H. Koike, A.R. Causey, C.E. Ells, R.R. Hosbons, S. Sagat, V.F. Urbanic, and D.K. Rodgers: Zirconium in the Nuclear Industry: 11th Int. Symp., ASTM STP 1295, ASTM, Philadelphia, PA, 1996, pp. 469–91.

    Google Scholar 

  13. B. Leitch, N. Christodoulou, and J. Root: Trans. 15th Int. Conf. on Structural Mechanics in Reactor Technology (SMiRT-15), Seoul, Korea, 1999, vol. XII, pp. 133–46.

  14. A.R. Causey, V. Fidleris, S.R. MacEwen, and C.W. Schulte: Influence on Radiation on Material Properties: 13th Int. Symp. (Part II), ASTM STP 956, ASTM, Philadelphia, PA, 1988, pp. 54–68.

    Google Scholar 

  15. R.A. Holt: J. Nucl. Mater., 1976, vol. 59, pp. 234–42.

    Article  CAS  Google Scholar 

  16. R.A. Holt and S.A. Aldridge: J. Nucl. Mater., 1985, vol. 135, pp. 246–59.

    Article  CAS  Google Scholar 

  17. M. Griffiths, C.K. Chow, C.E. Coleman, R.A. Holt, S. Sagat, and V.F. Urbanic: Effects of Radiation on Materials, 16th Int. Symp., ASTM STP 1175, ASTM, Philadelphia, PA, 1996, pp. 1077–1110.

    Google Scholar 

  18. A.R. Causey, R.A. Holt, N. Christodoulou, and E.T.C. Ho: Zirconium in the Nuclear Industry: 12th Int. Symp., ASTM-STP 1354, ASTM, West Conshohocken, PA, 2000, pp. 74–85.

    Google Scholar 

  19. A.R. Causey, J.E. Elder, R.A. Holt, and R.G. Fleck: Zirconium in the Nuclear Industry: 6th Int. Symp., ASTM STP-1245, ASTM, Philadelphia, PA, 1994, pp. 202–20.

    Google Scholar 

  20. E.J. Hearn: in Mechanics of Materials, Pergamon Press, Elmsford, NY, 1977, vol. 1. published by the International Series of Materials Science and Technology, vol. 19, ed. H.G. Hopkins, pgs. 195–96.

    Google Scholar 

  21. N. Christodoulou, P.A. Turner, E.T.C. Ho, C.K. Chow, and M. Resta Levi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 409–19.

    Article  CAS  Google Scholar 

  22. K.L. Murty, B.V. Tanikella, and J.C. Earthman: Acta Metall. Mater., 1994, vol. 42, pp. 3653–61.

    Article  CAS  Google Scholar 

  23. V. Fidleris: J. Nucl. Mater., 1974, vol. 54, pp. 199–211.

    Article  CAS  Google Scholar 

  24. R.D. Warda, V. Fidleris, and E. Tegtsoonian, Metall. Trans., 1973, vol. 4, pp. 1201–06.

    CAS  Google Scholar 

  25. V. Fidleris: Atomic Energy Rev., 1975, vol. 13, pp. 51–80.

    Google Scholar 

  26. V. Fidleris: Applications-Related Phenomena for Zirconium and Its Alloys, ASTM-STP-458, ASTM, Philadelphia, PA, 1969, pp. 1–17.

    Google Scholar 

  27. Creep of Zr Alloys in Nuclear Reactors, ASTM-STP-815, D.G. Franklin, G.E. Lucas, and A.L. Bement, eds., ASTM, Philadelphia, PA, 1983.

    Google Scholar 

  28. R.S.W. Shewfelt: Can. Metall. Q., 1984, vol. 23, pp. 441–45.

    CAS  Google Scholar 

  29. R.S.W. Shewfelt, L.W. Lyall, and D.P. Godin: J. Nucl. Mater., 1984, vol. 125, pp. 228–35.

    Article  CAS  Google Scholar 

  30. M. Pahutova and J. Cadek: Kovove Mater., 1976, vol. 14, pp. 378–84.

    CAS  Google Scholar 

  31. M. Pahutova and J. Cadek: J. Nucl. Mater., 1976, vol. 61, pp. 285–96.

    Article  CAS  Google Scholar 

  32. K. Nuttall: Scripta Metall., 1976, vol. 10, pp. 835–40.

    Article  CAS  Google Scholar 

  33. M.J. Luton and J.J. Jonas: Can. Metall. Q., 1972, vol. 11, pp. 79–90.

    CAS  Google Scholar 

  34. M. Pahutova, K. Kucharova, and J. Cadek: Mater. Sci. Eng., 1977, vol. 27, pp. 239–48.

    Article  CAS  Google Scholar 

  35. M. Pahutova and J. Cadek: Mater. Sci. Eng., 1975, vol. 20, pp. 277–85.

    Article  CAS  Google Scholar 

  36. M. Pahutova and J. Cadek: J. Nucl. Mater., 1977, vol. 68, pp. 111–21.

    Article  CAS  Google Scholar 

  37. I.M. Bernstein: Trans. TMS-AIME, 1967, vol. 239, pp. 1518–22.

    CAS  Google Scholar 

  38. Y.S. Kim: J. Nucl. Mater., 1997, vol. 250, pp. 164–70.

    Article  CAS  Google Scholar 

  39. A. Akhtar: Acta Metall., 1973, vol. 21, pp. 1–11.

    Article  Google Scholar 

  40. A. Akhtar: Metall. Trans. A, 1975, vol. 6A, pp. 1217–22.

    CAS  Google Scholar 

  41. B. Heritier, M.J. Luton, and J.J. Jonas: Met. Sci., 1974, vol. 8, pp. 41–48.

    CAS  Google Scholar 

  42. M. Davis, K.R. Montgomery, and J. Standring: J. Inst. Met., 1960–1961, vol. 89, pp. 172–74.

    Google Scholar 

  43. G. Beranger: Compt. Rend., 1964, vol. 259, pp. 4663–66.

    CAS  Google Scholar 

  44. H.E. Sills and R.A. Holt: Zirconium in the Nuclear Industry (4th Conf.), ASTM-STP-681, ASTM, Philadelphia, PA, 1979, pp. 325–41.

    Google Scholar 

  45. A. Akhtar: J. Nucl. Mater., 1973, vol. 47, pp. 79–86.

    Article  CAS  Google Scholar 

  46. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  47. H. Nakajima, G.M. Hood, and R.J. Schultz: Phil. Mag., 1988, vol. 58B, pp. 319–37.

    Google Scholar 

  48. A.D. King, G.M. Hood, and R.A. Holt: J. Nucl. Mater., 1991, vol. 185, pp. 174–81.

    Article  CAS  Google Scholar 

  49. J. Horvath, F. Dyment, and H. Mehrer: J. Nucl. Mater., 1984, vol. 126, pp. 206–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christodoulou, N., Chow, C.K., Turner, P.A. et al. Analysis of steady-state thermal creep of Zr-2.5Nb pressure tube material. Metall Mater Trans A 33, 1103–1115 (2002). https://doi.org/10.1007/s11661-002-0212-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0212-4

Keywords

Navigation