Skip to main content
Log in

Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The response of polycrystalline α-zirconium to various deformation conditions was investigated through electron backscattered diffraction (EBSD) characterization. The range of deformation conditions included quasi-static compression and tension at room and cryogenic temperatures, along with a Taylor cylinder impact experiment. The resultant data provided spatial resolution of individual with system activity as a function of the progression of deformation. Over 300 deformation twins were analyzed to identify the type of twin system and active variant, along with the Schmid factor in the parent orientation. These data supplied information on the distribution of Schmid factor and variant rank as a function of twin system and deformation condition. Results showed significant deviation from a maximum Schmid factor activation criterion and suggest deformation twinning is greatly affected by local internal stress heterogeneities and the sense of the applied stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Christian and S. Mahajan: Progs. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  2. P.G. Partridge: Metall. Rev., 1967, vol. 12, pp. 169–94.

    CAS  Google Scholar 

  3. M.H. Yoo and J.K. Lee: Phil. Mag. A, 1991, vol. 63, pp. 987–1000.

    CAS  Google Scholar 

  4. G.T. Gray III: in Encyclopedia of Materials Science and Engineering, R.W. Cahn, ed., Pergamon, Oxford, United Kingdom, 1990, vol. 2, pp. 859–66.

    Google Scholar 

  5. R.E. Reed-Hill: in Deformation Twining, R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers, eds., TMS, Warrendale, PA, 1964, vol. 25, pp. 295–320.

    Google Scholar 

  6. D.O. Hobson: Trans. TMS-AIME, 1968, vol. 242, pp. 1105–10.

    Google Scholar 

  7. E. Tenckhoff: Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircalloy, ASTM, Philadelphia, PA, 1988, pp. 3–77.

    Google Scholar 

  8. G.C. Kaschner and G.T. Gray III: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1997–2003.

    Article  CAS  Google Scholar 

  9. T.A. Mason, J.F. Bingert, G.C. Kaschner, S.I. Wright, and R.J. Larsen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 949–54.

    CAS  Google Scholar 

  10. R.W. Cahn: Acta Metall., 1953, vol. 1, pp. 49–70.

    Article  CAS  Google Scholar 

  11. G.I. Taylor: Proc. R. Soc. London A, 1948, vol. 194, p. 289.

    Article  Google Scholar 

  12. E.H. Lee and S.J. Tupper: J. Appl. Mech., 1954, vol. 21, pp. 63–71.

    Google Scholar 

  13. J.B. Hawkyard: Int. J. Mech. Sci., 1969, vol. 11, pp. 313–33.

    Article  Google Scholar 

  14. P.J. Maudlin, J.F. Bingert, J.W. House, and S.R. Chen: Int. J. Plasticity, 1999, vol. 15, pp. 139–66.

    Article  CAS  Google Scholar 

  15. G.C. Kaschner, J.F. Bingert, C. Liu, M.L. Lovato, P.J. Maudlin, M.G. Stout, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 3097–3108.

    Article  CAS  Google Scholar 

  16. P.J. Maudlin, G.T. Gray III, C.M. Cady, and G.C. Kaschner: Phil. Trans. R. Soc. London A, 1999, vol. 357, pp. 1707–29.

    Article  CAS  Google Scholar 

  17. B.L. Adams, S.I. Wright, and K. Kunze: Metall. Trans. A, 1993, vol. 24A, pp. 819–31.

    CAS  Google Scholar 

  18. N. Munroe and X. Tan: Scripta Mater., 1997, vol. 36, pp. 1383–86.

    Article  CAS  Google Scholar 

  19. D. Hull: Proc. Roy. Soc. London, 1963, vol. 274A, pp. 5–20.

    Google Scholar 

  20. E.J. Rapperport and C.S. Hartley: Trans. TMS-AIME, 1960, vol. 218, pp. 869–77.

    Google Scholar 

  21. A. Serra, R.C. Pond, and D.J. Bacon: Acta Metall. Mater., 1991, vol. 39, pp. 1469–80.

    Article  CAS  Google Scholar 

  22. A. Serra and D.J. Bacon: Phil Mag A, 1996, vol. 73, pp. 333–43.

    CAS  Google Scholar 

  23. S.G. Song and G.T. Gray III: Acta Metall. Mater., 1995, vol. 43, pp. 2325–37.

    Article  CAS  Google Scholar 

  24. K. Hashimoto and H. Margolin: Acta Metall., 1983, vol. 31, pp. 773–85.

    Article  CAS  Google Scholar 

  25. K. Hashimoto and H. Margolin: Acta Metall., 1983, vol. 31, pp. 787–800.

    Article  CAS  Google Scholar 

  26. C.E. Richards and C.N. Reid: Trans. TMS-AIME, 1968, vol. 242, pp. 1831–36.

    Google Scholar 

  27. D.F. Williams: Met. Sci. J., 1967, vol. 1, pp. 94–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Defect Properties and Mechanical Behavior of HCP Metals and Alloys” at the TMS Annual Meeting, February 11–15, 2001, in New Orleans, Louisiana, under the auspices of the following ASM committees: Materials Science Critical Technology Sector, Structural Materials Division, Electronic, Magnetic & Photonic Materials Division, Chemistry & Physics of Materials Committee, Joint Nuclear Materials Committee, and Titanium Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingert, J.R., Mason, T.A., Kaschner, G.C. et al. Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization. Metall Mater Trans A 33, 955–963 (2002). https://doi.org/10.1007/s11661-002-0165-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0165-7

Keywords

Navigation