Skip to main content

Advertisement

Log in

The effect of severe marforming on shape memory characteristics of a Ti-rich NiTi alloy processed using equal channel angular extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A Ti-49.8 at. pct Ni alloy was severely deformed at three different temperatures using equal-channel angular extrusion (ECAE). Three deformation temperatures—room temperature (below the martensite finish temperature), 50 °C (below the austenite start temperature), and 150 °C (above the austenite finish temperature)—were selected such that the initial deforming phase (B2 austenite or B19’ martensite) and the initial governing deformation mechanism (martensite reorientation, stress-induced martensitic transformation, or dislocation slip in martensite) would be different. The X-ray analysis results revealed that all processed samples mostly contained a deformed martensitic phase, regardless of the initial deforming phase and the deformation mechanism. Although the martensite start temperature did not change, the austenite start temperature decreased significantly in all deformation conditions, probably because of the effect of the internal stress field caused by the deformed microstructure. All deformation conditions led to an increase in the strength levels and some deterioration of shape-memory characteristics. However, a subsequent low-temperature annealing treatment significantly improved pseudoelastic strain levels while preserving the ultrahigh strength levels. The sample deformed at room temperature followed by the low-temperature annealing resulted in the most promising strength and shape-memory characteristics under compression, such that a 5.3 pct shape-memory strain at a 2200 MPa strength level and a 3.3 pct pseudoelastic strain at a 1900 MPa strength level were achieved. The differences between the strength levels and the shape-memory characteristics after severe deformation at different temperatures were attributed to the different amounts of plastic deformation and the resulting deformation textures, since at each deformation temperature the deformation mechanism was different. It is concluded that the severe marforming using ECAE could easily improve strength levels of NiTi alloys while preserving the shape-memory and pseudoelasticity (PE) characteristics and, thus, improve the thermomechanical fatigue behavior. However, lower deformation temperatures are necessary to hinder formation of macroshear bands, and ECAE angles larger than 90 deg should be used to reduce the amount of strain applied in one pass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Otsuka and C.M. Wayman: Shape Memory Materials, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  2. D. Wurzel: Mater. Sci. Eng. A, 1999, vols. 273–275, p. 634.

    Google Scholar 

  3. E. Hornbogen, V. Mertinger, and D. Wurzel: Scripta Mater., 2001, vol. 44, p. 171.

    Article  CAS  Google Scholar 

  4. D.A. Miller and D.C. Lagoudas: Mater. Sci. Eng. A, 2001, vol. 308, p. 161.

    Article  Google Scholar 

  5. E. Hornbogen: Mater. Sci. Eng. A, 1999, vols. 273–275, p. 630.

    Google Scholar 

  6. J.C. Ewert, I. Bohm, R. Peter, and F. Haider: Acta Mater., 1997, vol. 45, p. 2197.

    Article  CAS  Google Scholar 

  7. Y. Liu: Mater. Sci. Eng. A, 1999, vols. 273–275, p. 668.

    Google Scholar 

  8. H.C. Lin and S.K. Wu: Acta Metall. Mater., 1994, vol. 42, p. 1623.

    Article  CAS  Google Scholar 

  9. Y. Liu and D. Favier: Acta Mater., 2000, vol. 48, p. 3489.

    Article  CAS  Google Scholar 

  10. H. Nakayama, K. Tsuchiya, Z.G. Liu, M. Umemoto, K. Morii, and T. Shimizu: Mater. Trans. JIM, 2001, vol. 42, p. 1987.

    Article  CAS  Google Scholar 

  11. Y. Liu and S.P. Galvin: Acta Mater., 1997, vol. 45, p. 4431.

    Article  CAS  Google Scholar 

  12. H. Nakayama, K. Tsuchiya, and M. Umemoto: Scripta Mater., 2001, vol. 44, p. 1781.

    Article  CAS  Google Scholar 

  13. E. Hornbogen: J. Mater. Sci., 1999, vol. 34, p. 599.

    Article  CAS  Google Scholar 

  14. H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao: Acta Metall. Mater., 1991, vol. 39, p. 2069.

    Article  CAS  Google Scholar 

  15. L.M. Schetky: Robotics Age, 1984, vol. 14, p. 13.

    Google Scholar 

  16. C.M. Wayman: in Phase Transformations, Physical Metallurgy, R.W. Cahn and O. Haasen, eds., Elsevier, New York, NY.

  17. B.J. deBlonk and D.C. Lagoudas: Smart Mater. Struct., 1998, vol. 7, p. 771.

    Article  CAS  Google Scholar 

  18. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, p. 103.

    Article  CAS  Google Scholar 

  19. L.R. Cornwell, K.T. Hartwig, R.E. Goforth, and S.L. Semiatin: Mater. Characterization, 1997, vol. 38, p. 119.

    Article  CAS  Google Scholar 

  20. J. Robertson, J.-T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson: J. Non-Crystalline Solids, 2003, vol. 317, pp. 144–51.

    Article  CAS  Google Scholar 

  21. H. Sitepu, W.W. Schmahl, J.K. Allafi, G. Eggeler, A. Dlouhy, D.M. Toebbens, and M. Tovar: Scripta Mater., 2002, vol. 46, p. 543.

    Article  CAS  Google Scholar 

  22. H.F. Lopez: Mater. Lett., 2001, vol. 51, p. 144.

    Article  CAS  Google Scholar 

  23. A.A. Bulbich and P. Toledano: Phys. Rev. Lett., 1998, vol. 81, p. 838.

    Article  Google Scholar 

  24. Y.F. Zheng, J.X. Xhang, L.C. Zhao, and H.Q. Ye: Mater. Lett., 1999, vol. 41, p. 9.

    Article  CAS  Google Scholar 

  25. M. Piao, K. Otsuka, S. Miyazaki, and H. Horikawa: Mater. Trans. JIM, 1993, vol. 34, p. 919.

    CAS  Google Scholar 

  26. Y. Liu and G.S. Tan: Intermetallics, 2000, vol. 8, p. 67.

    Article  CAS  Google Scholar 

  27. H. Sehitoglu, I. Karaman, R. Anderson, X.Y. Zhang, K. Gall, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2000, vol. 48, p. 3311.

    Article  CAS  Google Scholar 

  28. F. Khelfaoui, G. Thollet, and G. Guenin: Mater. Sci. Eng. A, 2002, vol. 338, p. 305.

    Article  Google Scholar 

  29. H. Sehitoglu, J. Jun, X. Zhang, I. Karaman, Y. Chumlyakov, H.J. Maier, and K. Gall: Acta Mater., 2001, vol. 49, p. 3609.

    Article  CAS  Google Scholar 

  30. K. Gall, T.J. Lim, D.L. McDowell, H. Sehitoglu, and Y.I. Chumlyakov: Int. J. Plast., 2000, vol. 16, p. 1189.

    Article  CAS  Google Scholar 

  31. V.M. Segal: Mater. Sci. Eng. A, 1999, vol. 271, p. 322.

    Article  Google Scholar 

  32. H.J. Bunge, Y. Perlovich, M. Isaenkova, V. Fesenko, and R. Rustamov: Text. Microstr., 1998, vol. 31, p. 53.

    Article  Google Scholar 

  33. Y. Perlovich, H.J. Bunge, M. Isaenkova, and V. Fesenko: Mater. Sci. Forum, 2002, vols. 408 (4), p. 1145.

    Article  Google Scholar 

  34. T.H. Nam, T. Saburi, Y. Nakata, and K. Shimizu: Mater. Trans. JIM, 1990, vol. 31, p. 1050.

    CAS  Google Scholar 

  35. K. Otsuka, T. Sawamura, and K. Shimizu: Phys. Sta. Sol. (a), 1971, vol. 5, p. 457.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaman, I., Karaca, H.E., Luo, Z.P. et al. The effect of severe marforming on shape memory characteristics of a Ti-rich NiTi alloy processed using equal channel angular extrusion. Metall Mater Trans A 34, 2527–2539 (2003). https://doi.org/10.1007/s11661-003-0012-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0012-5

Keywords

Navigation