Skip to main content
Log in

Mechanical properties of an ultrafine-grained Al-7.5 Pct Mg alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, the relationships between the structure and properties of a cryomilled Al-7.5 pct Mg alloy were investigated. The microstructure of the cryomilled Al-7.5 pct Mg alloy consisted of equiaxed grains with an approximate size of 300 nm. Thermal treatment had only a minor effect on microstructure, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) results. The tensile behavior was characterized by high strength, high ductility, and low-strain-hardening. The tensile deformation was relatively uniform, with limited necking deformation, and fracture surfaces were characterized by microdimples. The variation of strain rates from 4 · 10−4 to 4 · 10−2 s−1 had an insignificant effect on tensile behavior. Comparison of compressive and tensile behavior revealed similar moduli and yield strengths, although the postyield behavior was markedly asymmetric. The present results indicate that grain-size effects, solid-solution strengthening, Orowan strengthening, and dislocation strengthening contribute significantly to the properties of a cryomilled Al-7.5 pct Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  2. C. Suryanarayana: Int. Mater. Rev., 1995, vol. 40, pp. 41–64.

    CAS  Google Scholar 

  3. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997, vol. 45, pp. 4019–25.

    Article  CAS  Google Scholar 

  4. A.M. Elsherik and U. Erb: J. Mater. Sci., 1995, vol. 30, pp. 5743–49.

    Article  CAS  Google Scholar 

  5. R. Birringer: Mater. Sci. Eng., 1989, vol. A117, pp. 33–43.

    CAS  Google Scholar 

  6. K. Lu: Mater. Sci. Eng., 1996, vol. R16, pp. 161–221.

    Google Scholar 

  7. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  8. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335–43.

    Article  CAS  Google Scholar 

  9. L. Lu, L.B. Wang, B.Z. Ding, and K. Lu: J. Mater. Res., 2000, vol. 15, pp. 270–73.

    CAS  Google Scholar 

  10. W.M. Yin, S.H. Whang, R. Mirshams, and C.H. Xiao: Mater. Sci. Eng., 2001, vol. A 301, pp. 18–22.

    Google Scholar 

  11. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.

    Article  CAS  Google Scholar 

  12. R. Rodriguez, R.W. Hayes, and E.J. Lavernia: Acta Mater., 2002, in press.

  13. R.W. Hayes, R. Rodriguez, and E.J. Lavernia: Acta Mater., 2001, vol. 49, pp. 4055–68.

    Article  CAS  Google Scholar 

  14. X.K. Sun, H.T. Cong, M. Sun, and M.C. Yang: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1017–24.

    Article  CAS  Google Scholar 

  15. M. Jain and T. Christman: Acta Metall., 1994, vol. 42, pp. 1901–11.

    Article  CAS  Google Scholar 

  16. J.E. Carsley, A. Fisher, W.W. Milligan, and E.C. Aifantis: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2261–71.

    Article  CAS  Google Scholar 

  17. 1999 Annual Book of ASTM Standards, West Conshohocken, PA, 1999, pp. 99–106.

  18. M.A. Meyers and K.K. Chawla: Mechanical Metallurgy Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984.

    Google Scholar 

  19. B.Q. Han and D.C. Dunand: Mater. Sci. Eng., 2000, vol. A277, pp. 297–304.

    CAS  Google Scholar 

  20. J. Benedict, R. Anderson, and S.J. Klepeis: Materials Research Society Symposia, Materials Research Society, Pittsburgh, PA, 1992, pp. 121–40.

    Google Scholar 

  21. F. Zhou, R. Rodriguez, and E.J. Lavernia: Mater. Sci. Forum, 2002, vols. 386–388, pp. 409–14.

    Google Scholar 

  22. T. Mukai, K. Ishikawa, and K. Higashi: Mater. Sci. Eng., 1995, vol. A204, pp. 12–18.

    CAS  Google Scholar 

  23. G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev, and I.V. Aleksandrov: NanoStruct. Mater., 1997, vol.9, pp. 477–80.

    Article  CAS  Google Scholar 

  24. T. Mukai, M. Kawazoe, and K. Higashi: Mater. Sci. Eng., 1998, vol. A247, pp. 270–74.

    CAS  Google Scholar 

  25. D. Jia, K.T. Ramesh, and E. Ma: Scripta Mater., 2000, vol. 42, pp. 73–78.

    CAS  Google Scholar 

  26. S.L. Semiatin, K.V. Jata, M.D. Uchic, P.B. Berbon, D.E. Matejezyk, and C.C. Bampton: Scripta Mater., 2001, vol. 44, pp. 395–400.

    Article  CAS  Google Scholar 

  27. D. Jia, K.T. Ramesh, E. Ma, L. Lu, and K. Lu: Scripta Mater., 2001, vol. 45, pp. 613–20.

    Article  CAS  Google Scholar 

  28. Z. Lee, R. Rodriguez, E.J. Lavernia, and S.R. Nutt: Ultrafine-Grained Materials II, Seattle, WA, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 653–59.

    Google Scholar 

  29. ASM Handbook: Alloy Phase Diagrams, ASM, Metals Park, OH, 1992.

  30. F. Zhou, K.H. Chung, and E.J. Lavernia: in Powder Metallurgy Alloys and Particulate Materials for Industrial Application, A.E. Alman and J.W. Newkirk, eds., TMS, Warrendale, PA, 2000, pp. 167–77.

    Google Scholar 

  31. D.L. Zhang, T.B. Massalski, and M.R. Paruchuri: Metall. Mater. Trans. A, 1994, vol. 25, pp. 73–79.

    Google Scholar 

  32. F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 3451–58.

    CAS  Google Scholar 

  33. F. Zhou, J. Lee, and E.J. Lavernia: Scripta Mater., 2001, vol. 44, pp. 2013–17.

    Article  CAS  Google Scholar 

  34. I.C. Barlow, H. Jones, and W.M. Rainforth: Acta Mater., 2001, vol. 49, pp. 1209–24.

    Article  CAS  Google Scholar 

  35. K.I. Moon, H.S. Park, and K.S. Lee: J. Alloys Compounds, 2001, vol. 325, pp. 236–44.

    Article  CAS  Google Scholar 

  36. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 938–44.

    CAS  Google Scholar 

  37. T.H. Courtney: Mechanical Behavior of Materials, 2nd ed., McGraw-Hill Higher Education, New York, NY, 2000.

    Google Scholar 

  38. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone: Materials Research Society Symposia Proceedings, Materials Research Society, Pittsburgh, PA, 1989, pp. 79–86.

    Google Scholar 

  39. O. Susegg, E. Hellum, A. Olsen, and M.J. Luton: Phil. Mag. A, 1993, vol. 68, pp. 367–80.

    CAS  Google Scholar 

  40. L.M. Brown and R.K. Ham: in Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Elsevier, Amsterdam, 1971, pp. 9–135.

    Google Scholar 

  41. X.Z. Liao, J.Y. Huang, Y.T. Zhu, F. Zhuo, and E.J. Lavernia: Ultrafine-Grained Materials II, Seattle, WA, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe eds., TMS, Warrendale, PA, 2002, pp.323–30.

    Google Scholar 

  42. R.W. Siegel and G.E. Fougere: NanoStruct. Mater., 1995, vol. 6, pp. 205–16.

    Article  CAS  Google Scholar 

  43. D.J. Lloyd and L.R. Morris: Acta Metall., 1977, vol. 25, pp. 857–61.

    Article  CAS  Google Scholar 

  44. D.J. Lloyd: Met. Sci., 1980, vol. May, pp. 193–98.

  45. J.M. Robinson: Int. Mater. Rev., 1994, vol. 39, pp. 217–27.

    CAS  Google Scholar 

  46. F.A. Mohamed, K.L. Murty, and T.G. Langdon: Acta Metall., 1974, vol. 22, pp. 325–32.

    Article  CAS  Google Scholar 

  47. P. Hahner: Acta Mater., 1997, vol. 45, pp. 3695–707.

    Article  CAS  Google Scholar 

  48. B. Russell: Phil. Mag., 1963, vol. 8, pp. 615–30.

    CAS  Google Scholar 

  49. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  50. G.T. Gray III: Acta Metall., 1988, vol. 36, pp. 1745–54.

    Article  CAS  Google Scholar 

  51. E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1223–33.

    Article  CAS  Google Scholar 

  52. D.E. Matejcyzk and C.C. Bampton: unpublished data on cryomilled nanostructured Al-7.5 pct Mg, 2002, Canoga Park, CA.

  53. T. Mukai, M. Kawazoe, and K. Higashi: NanoStruct. Mater., 1998, vol. 10, pp. 755–65.

    Article  CAS  Google Scholar 

  54. S.Y. Chang, J.G. Lee, K.T. Park, and D.H. Shin: Mater. Trans., 2001, vol. 42, pp. 1074–80.

    Article  CAS  Google Scholar 

  55. T. Hasegawa, T. Miura, T. Takahashi, and T. Yakou: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 902–08.

    CAS  Google Scholar 

  56. E. Ma: Powder Metall., 2000, vol. 43, pp. 306–10.

    CAS  Google Scholar 

  57. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Acta Metall. Mater., 1994, vol. 42, pp. 2467–75.

    Article  CAS  Google Scholar 

  58. S. Hariprasad, S.M.L. Sastry, and K.L. Jerina: Acta Mater., 1996, vol. 44, pp. 383–89.

    Article  CAS  Google Scholar 

  59. C.J. Youngdahl, J.R. Weertman, R.C. Hugo, and H.H. Kung: Scripta Mater., 2001, vol. 44, pp. 1475–78.

    Article  CAS  Google Scholar 

  60. M. Legros, B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker: Phil. Mag. A, 2000, vol. 80, pp. 1017–26.

    Article  CAS  Google Scholar 

  61. Z. Horita, T. Fujinami, and T.G. Langdon: Mater. Sci. Eng., 2001, vol. A318, pp. 34–41.

    CAS  Google Scholar 

  62. M.N. Rittner, J.R. Weertman, J.A. Eastman, K.B. Yoder, and D.S. Stone: Mater. Sci. Eng., 1997, vol. A237, pp. 185–90.

    CAS  Google Scholar 

  63. D. Kuhlmann-Wilsdorf: Mater. Sci. Forum, 2000, vols. 331–337, pp. 689–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B.O., Mohamed, F.A., Lee, Z. et al. Mechanical properties of an ultrafine-grained Al-7.5 Pct Mg alloy. Metall Mater Trans A 34, 603–613 (2003). https://doi.org/10.1007/s11661-003-0095-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0095-z

Keywords

Navigation