Skip to main content

Advertisement

Log in

Role of microstructure on sulfide stress cracking of oil and gas pipeline steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sulfide stress cracking (SSC) behavior of three microstructures, i.e., ferritic-pearlitic microstructure, ultrafine ferrite microstructure, and acicular ferrite dominated microstructure, was investigated using the bent-beam test in aqueous hydrogen sulfide (H2S) environments. The critical stress (Sc) values of these three microstructures were determined experimentally to be 1008, 1190, and more than 1260 MPa, respectively. As a result, the acicular ferrite-dominated microstructure possessed the best SSC resistance, the ultrafine ferrite microstructure was in a second position, and the ferritic-pearlitic microstructure was relatively the worst. It was analyzed that hydrogen embrittlement (HE) was the main failure mechanism in SSC cracking for high-strength pipeline steels, and preferential hydrogen accumulation within the plastic zone of the main crack tip accounted for the exhibited embrittlement. It was remarkable that the strength values of pipeline steels were not the only factor to determine their SSC susceptibilities. Microstructure played an important role in the SSC initiation and propagation of pipeline steels. In particular, both the fine dispersed precipitations of carbonitrides and the high-density tangled dislocations in acicular ferrite, which behaved as the hydrogen traps, should be attributed to the optimal SSC resistance of pipeline steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kaneko and A. Lkeda: Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 575–77.

    CAS  Google Scholar 

  2. H.F. Lopez, R. Bharadwaj, J.L. Albarran, and L. Martinez: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2419–28.

    CAS  Google Scholar 

  3. H. Huang and W.J.D. Shaw: Corr. Sci., 1993, vol. 34, pp. 61–78.

    Article  CAS  Google Scholar 

  4. H. Margot-Marette, G. Bardou, and J.C. Charbonnier: Corr. Sci., 1987, vol. 27, pp. 1009–26.

    Article  CAS  Google Scholar 

  5. R.T. Hill: Proc. Int. Conf. on HSLA Steels, Beijing, 1985, J.M. Gray, T. Ko, Z. Shouhua, B.R. Wu and X.S. Xie, eds., ASM INTERNATIONAL, Metals Park, OH, 1985, pp. 753–61.

    Google Scholar 

  6. J.L. Albarran, L. Martinez, and H.F. Lopez: Corrosion 95, 1995, paper no. 154.

  7. M. Watkins and R. Ayer: Corrosion 95, 1995, paper no. 50.

  8. J.M. Gregg and H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 739–48.

    Article  CAS  Google Scholar 

  9. M.C. Zhao, K. Yang, and Y.Y. Shan: Mater. Sci. Eng. A, 2002, vol. 335, pp. 14–20.

    Article  Google Scholar 

  10. P.J. Hurley, G.L. Kelly, and P.D. Hodgson: Mater. Sci. Technol., 2000, vol. 16, pp. 1273–76.

    Article  CAS  Google Scholar 

  11. G. Echaniz, C. Morales, and T. Perez: Corrosion 98, 1998, paper no. 120.

  12. NACE Standard TM0177-96, Method B-NACE Standard Bent-Beam Test, NACE, Houston, TX, 1996.

    Google Scholar 

  13. Y.E. Smith, A.P. Coldren, and R.L. Cryderman: Toward Improved Ductility and Toughness, Climax Molybdenum Company, Ann Arbor, MI, 1971, pp. 119–42.

    Google Scholar 

  14. J.P. Hirth and R.F.M. Medalist: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  15. T.Y. Zhang, W.Y. Chu and C.M. Hsiao: Metall. Trans. A, 1985, vol. 16A, pp. 1649–53.

    CAS  Google Scholar 

  16. S.V. Nair and J.K. Tien: Metall. Trans. A, 1985, vol. 16A, pp. 2333–40.

    CAS  Google Scholar 

  17. J.F. Knott: Hydrogen Effects on Material Behavior, Conf. Proc., Moran, WY, 1990, N.R. Moody and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1990, pp. 661–75.

    Google Scholar 

  18. A. Yoshie, M. Fujioka, Y. Watanabe, K. Nishioka, and H. Morikawa: Iron Steel Inst. Jpn. Int., 1992, vol. 32, p. 395–404.

    CAS  Google Scholar 

  19. M.C. Zhao, F.R. Xiao, Y.Y. Shan, Y.H. Li, and K. Yang: Acta Metall. Sinica, 2002, vol. 38, pp. 283–87.

    CAS  Google Scholar 

  20. R. Priestner and L. Ali: Mater. Sci. Technol., 1993, vol. 9, pp. 135–41.

    CAS  Google Scholar 

  21. G.M. Pressouyre and I.M. Bernstein: Metall. Trans. A, 1981, vol. 12A, pp. 835–44.

    Google Scholar 

  22. I.M. Bernstein and M. Dollar: Hydrogen Effects on Material Behavior, Conf. Proc. Moran, WY, 1990, N.R. Moody and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1990, pp. 955–63.

    Google Scholar 

  23. J.C. Charbonnier, H. Margot-Marette, A.M. Brass, and M. Aucouturier: Metall. Mater. Trans. A, 1985, vol. 16A, pp. 935–44.

    CAS  Google Scholar 

  24. P. Rozenak, I.M. Robertson, and H.K. Bimbaum: Acta Metall., 1990, vol. 38, pp. 2031–40.

    Article  CAS  Google Scholar 

  25. G.M. Bond, I.M. Robertson, and H.K. Bimbaum: Acta Metall., 1988, vol. 36, pp. 2193–97.

    Article  CAS  Google Scholar 

  26. Y.B. Wang, W.Y. Chu, and J.M. Xiao: Sci. Chin., 1989, vol. 10A, pp. 1065–73.

    Google Scholar 

  27. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  28. S.D. Wu: Master’s Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, (in Chinese) 1989, pp. 37–44.

    Google Scholar 

  29. D.V. Edmonds and R.C. Cochrane: Metall. Trans. A, 1990, vol. 21A, pp. 1527–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, MC., Tang, B., Shan, YY. et al. Role of microstructure on sulfide stress cracking of oil and gas pipeline steels. Metall Mater Trans A 34, 1089–1096 (2003). https://doi.org/10.1007/s11661-003-0128-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0128-7

Keywords

Navigation