Skip to main content
Log in

The role of nitrogen on the deformation response of hadfield steel single crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We studied the role of nitrogen content on the stress-strain response of Hadfield steel (HS) single crystals under compressive loading. Two different nitrogen concentrations were examined for each orientation (0.05 wt pct and 1.06 wt pct) with drastic increase in critical resolved shear stresses (CRSSs) and strain-hardening coefficients compared to HS without nitrogen. The stress-strain response was strongly dependent on both the crystallographic orientation and the nitrogen concentration. Transmission electron microscopy (TEM) results revealed that, for the HS with 1.06 wt pct nitrogen, the hardening is influenced by the coexisting deformation twins and precipitates, which both act as strong obstacles against dislocation motion. A visco-plastic self-consistent (VPSC) model was modified to account for precipitation and twinning length scales in HS with 1.06 wt pct nitrogen for selected crystallographic orientations. Incoherent precipitates in the hardening formulation were treated as factors affecting the mean free path of dislocations. The model also accounts for plastic relaxation of precipitates with increasing strain and accurately predicts the stress-strain response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Simmons: Ph.D. Dissertation, Oregon Graduate Institute of Science and Technology, Portland, Oregon 1993.

    Google Scholar 

  2. I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov: Acta Mater., 2001, vol. 49, p. 3919.

    Article  CAS  Google Scholar 

  3. K.J., Irvine, D.T. Llewellyn, and F.B. Pickering: J. Iron Steel Inst., 1961, vol. 199, p. 153.

    CAS  Google Scholar 

  4. M.L.G. Byrnes, M. Grujicic, and W.S. Owen: Acta Metall., 1987, vol. 35, p. 1853.

    Article  CAS  Google Scholar 

  5. R.P. Reed: JOM, 1989, vol. 41, p. 16.

    CAS  Google Scholar 

  6. Y.I. Chumlyakov, A.D. Korotaev: Russ. Phys. J., 1992, vol. 35 (9), p. 783.

    Article  Google Scholar 

  7. Y.I. Chumlyakov and I.V. Kireeva, and O.V. Ivanova: Thr. Phys. Met. Metallogr., 1994, vol. 78 (3), p. 350.

    Google Scholar 

  8. Y.I. Chumlyakov, I.V. Kireeva, A.D. Korotaev, E.I. Litvinova, and Y.L. Zuev: Russ. Phys. J., 1996, vol. 39 (3), p. 189.

    Article  Google Scholar 

  9. Y.I. Chumlyakov, I.V. Kireeva, H. Sehitoglu, E.I. Litvinova, E.G. Zaharova, and N.V. Luzginova: 5th Int. Conf. on High Nitrogen Steels, Espoo, Finland, and Stockolm, Sweden, May 24–29, 1998.

  10. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva: Scripta Mater., 2001, vol. 44, p. 337.

    Article  CAS  Google Scholar 

  11. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier: Acta Mater., 2000, vol. 48, p. 1345.

    Article  CAS  Google Scholar 

  12. V.G. Gavriljuk and H. Berns: High Nitrogen Steels, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  13. R.A. Lebensohn and C.N. Tomé: Mater. Sci. Eng. A, 1994, vol. 175, p. 71.

    Article  Google Scholar 

  14. A. Staroselsky and L. Anand: J. Mech. Phys. Solids, 1998, vol. 46, p. 671.

    Article  CAS  Google Scholar 

  15. S.R. Kalindindi: Int. J. Plasticity, 1998b, vol. 14, p. 1265.

    Article  Google Scholar 

  16. I. Karaman, H. Sehitoglu, A.J. Beaudoin, Y.I. Chumlyakov, H.J. Maier, and C.N. Tome: Acta Mater., 2000, vol. 48, p. 2031.

    Article  CAS  Google Scholar 

  17. I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva: Metall. Mater. Trans. A, 2001, vol. 32A, p. 695.

    Article  CAS  Google Scholar 

  18. S.H. Choi and F. Barlat: Scripta Mater., 1999, vol. 41, p. 981.

    Article  CAS  Google Scholar 

  19. W.F. Hosford and R.H. Zeisloft: Metall. Trans., 1972, vol. 3, pp. 113–21.

    CAS  Google Scholar 

  20. P. Bate, W.T. Roberts, and D.V. Wilson: Acta Metall. Mater., 1981, vol. 29, p. 1797.

    Article  CAS  Google Scholar 

  21. F. Barlat and J. Liu: Mater. Sci. Eng. A, 1998, vol. A257, p. 47.

    CAS  Google Scholar 

  22. M.H. Lyttle and J.A. Wert: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1283–88.

    Google Scholar 

  23. L.M. Brown and G.R. Woolhous: Phil. Mag. A, 1970, vol. 21, p. 329.

    CAS  Google Scholar 

  24. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971a, vol. 23, p. 1185.

    CAS  Google Scholar 

  25. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971b, vol. 23, p. 1201.

    CAS  Google Scholar 

  26. R. Lebensohn and C.N. Tomé: Acta Metall Mater., 1993, vol. 41, p. 2611.

    Article  CAS  Google Scholar 

  27. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, p. 57.

    Article  Google Scholar 

  28. A. Acharya and A.J. Beaudoin: J. Mech. Phys. Solids, 2000, vol. 48, p. 2213.

    Article  Google Scholar 

  29. E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A., 1999, vol. 30A, p. 1223.

    CAS  Google Scholar 

  30. U.F. Kocks, A.S. Argon, and M.F. Ashby: Progr. Mater. Sci., 1975, vol. 19, p. 1.

    Article  Google Scholar 

  31. L. Remy: Acta Metall., 1978, vol. 26, p. 443.

    Article  CAS  Google Scholar 

  32. U.F. Kocks, C.N. Tomé, and R.H. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  33. C.N. Tomé, R.A. Lebensohn, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, p. 2667.

    Article  Google Scholar 

  34. T. Mura: Micromechanics of Defects in Solids, Kluwer Academic Pub., Dordrecht, The Netherlands, 1993.

    Google Scholar 

  35. E. Nembach: Particle Strengthening of Metals and Alloys, John Wiley & Sons, Inc., New York, NY, 1997.

    Google Scholar 

  36. M.F. Ashby: Phil. Mag., 1970, vol. 14, p. 1157.

    Google Scholar 

  37. F.R.N. Nabarro, Z.S. Basinski, and D.B. Holt: Adv. Phys., 1964, vol. 13, p. 193.

    Article  CAS  Google Scholar 

  38. L.M. Brown and D.R. Clarke: Acta Metall., 1975, vol. 23, p. 821.

    Article  CAS  Google Scholar 

  39. H. Ino, K. Oda, and K. Umezu: J. Jpn. Inst. Met., 1989, vol. 53, p. 372.

    CAS  Google Scholar 

  40. N. Narita and J. Takamura: in Dislocations in Solids, dF.R.N. Nabarro, ed., North Holland Publication Co., Amsterdam, Netherlands, 1992, vol. 9, p. 135.

    Google Scholar 

  41. R.L. Fleischer: Acta Metall., 1963, vol. 11, p. 203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canadinc, D., Sehitoglu, H., Karaman, I. et al. The role of nitrogen on the deformation response of hadfield steel single crystals. Metall Mater Trans A 34, 1821–1831 (2003). https://doi.org/10.1007/s11661-003-0148-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0148-3

Keywords

Navigation