Skip to main content
Log in

Creep of aluminum-based closed-cell foams

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metal foams creep when loaded mechanically at high homologous temperatures. We have studied the creep behavior of closed-cell aluminum-based foams with relative densities of 0.092, 0.112, and 0.163. Compressive creep tests were performed at 300 °C at strain rates ranging from 10−9 to 10−4 s−1. Special efforts were made to produce and characterize a bulk reference material exhibiting the same chemical composition. Results show that the foams exhibit a lower creep strength and a higher stress exponent than predicted by the Gibson-Ashby model for regular foams. The possible mechanisms responsible for this deviation are discussed. A semi-empirical rate equation is established which describes the experimental data well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

  2. Porous and Cellular Materials for Structural Applications, MRS Symposium Proceedings, D.S. Schwartz, D.S. Shih, A.G. Evans, and H.N.G. Wadley, eds., Materials Research Society, Pittsburgh, PA, 1998, vol. 521.

    Google Scholar 

  3. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, MA, 2000.

    Google Scholar 

  4. Cellular Materials and Metal Foaming Technology, Conf. Proc., J. Banhart, M.F. Ashby, and N.A. Fleck, eds., Metall Innovation Technologie (MIT), Bremen, Germany, 2001.

    Google Scholar 

  5. E.W. Andrews, L.J. Gibson, and M.F. Ashby: Acta Mater., 1999, vol. 47, pp. 2853–63.

    Article  CAS  Google Scholar 

  6. E.W. Andrews, J.S. Huang and L.J. Gibson: Acta Mater., 1999, vol. 47, pp. 2927–35.

    Article  CAS  Google Scholar 

  7. P. Zhang, M. Haag, O. Kraft, A. Wanner, and E. Arzt: Phil. Mag. A, 2002, vol. 82, pp. 2895–2907.

    Article  CAS  Google Scholar 

  8. S. Akiyama, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, and M. Itoh: U.S. Patent No. 4,712,277, 1987.

  9. T. Mijoshi, M. Itoh, S. Akiyama, and A. Kitahara: in Cellular Materials and Metal Foaming Technology, Conf. Proc., J. Banhart, M.F. Ashby, and N.A. Fleck, eds., Metall Innovation Technologie (MIT), Bremen, Germany, 1999, pp. 125–32.

    Google Scholar 

  10. G. Petzow: Metallographisches, Keramographisches und Plastographisches Ätzen, 2nd ed., Gebr. Bornträger, Berlin, 1994, p. 235 (in German).

    Google Scholar 

  11. A.F. Bastawros and A.G. Evans: Adv. Eng. Mater., 2000, vol. 2 (4), pp. 210–14.

    Article  CAS  Google Scholar 

  12. W. Blum and B. Reppich: in Creep Behaviour of Crystalline Solids, B. Wilshire and R.W. Evans, eds., Prineridge Press, Swansea, United Kingdom, 1985, p. 83.

    Google Scholar 

  13. E. Arzt: Res Mechanica, 1991, vol. 31, pp. 399–453.

    Google Scholar 

  14. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, p. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haag, M., Wanner, A., Clemens, H. et al. Creep of aluminum-based closed-cell foams. Metall Mater Trans A 34, 2809–2817 (2003). https://doi.org/10.1007/s11661-003-0182-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0182-1

Keywords

Navigation