Skip to main content
Log in

Cellular-to-dendritic transition during the directional solidification of binary alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The transition from a cellular to dendritic microstructure during the directional solidification of alloys is examined through experiments in a transparent system of succinonitrile (SCN)-salol. In a cellular array, a strong coupling of solute fields exists between the neighboring cells, which leads not only to multiple solutions of primary spacing, but also includes multiple solutions of amplitude, tip radius, and shape of the cell. It is found that these multiple solutions of different microstructural features in a cellular array, obtained under fixed growth conditions and compositions, play a key role in the cell-dendrite transition (CDT). The CDT is controlled not only by the input parameters of alloy composition (C 0), growth rate (V), and thermal gradient (G), but also by microstructure parameters such as the local primary spacing. It is shown that the CDT is not sharp, but occurs over a range of growth conditions characterized by the minimum and maximum values of V/G. Within this transition range, a critical spacing is observed above which a cell transforms to a dendrite. This critical spacing is given by the geometric mean of the thermal, diffusion, and capillary lengths and is inversely proportional to composition in weight percent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kurz and J.D. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.

    Article  CAS  Google Scholar 

  2. R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 977–82.

    CAS  Google Scholar 

  3. B. Billia and R. Trivedi: in Handbook of Crystal Growth, D.T.J. Hurle, ed., Elsevier Science Publ., New York, NY, 1993, vol. 2, pp. 900–1073.

    Google Scholar 

  4. W.A. Tiller and J.W. Rutter: J. Can. Phys., 1956, vol. 34, pp. 96–121.

    Google Scholar 

  5. S.N. Tewari and V. Laxmanan: Metall. Trans. A, 1987, vol. 18A, pp. 167–70.

    CAS  Google Scholar 

  6. M. Georgelin and A. Pocheau: Phys. Rev. E, 1998, vol. 57, pp. 3189–203.

    Article  CAS  Google Scholar 

  7. K. Somboonsuk, J.T. Mason, and R. Trivedi: Metall. Trans. A, 1984, vol. 15A, pp. 967–75.

    CAS  Google Scholar 

  8. M.A. Eshelman, V. Seetharaman, and R. Trivedi: Acta Metall., 1988, vol. 36, pp. 1165–74.

    Article  CAS  Google Scholar 

  9. M.A. Eshelman: Ph.D. Thesis, Iowa State University, Ames, IA, 1987.

    Google Scholar 

  10. Y.B. Zel’dovich, A.G. Istratov, N.I. Kidin, and V.B. Librovich: Combus. Sci. Technol., 1980, vol. 24, pp. 1–13.

    Google Scholar 

  11. J.S. Langer: Phys. Rev. A, 1987, vol. 36, pp. 3350–58.

    Article  Google Scholar 

  12. E. Brener and D.E. Temkin: Phys. Rev. A, 1995, vol. 51, pp. 351–59.

    CAS  Google Scholar 

  13. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.

    Article  CAS  Google Scholar 

  14. N. Provatas, N. Goldenfeld, and J. Dantzig: Phys. Rev. Lett., 1998, vol. 80, pp. 3308–11.

    Article  CAS  Google Scholar 

  15. J.A. Warren and W.J. Boettinger: Acta Metall Mater., 1995, vol. 43, pp. 689–96.

    Article  CAS  Google Scholar 

  16. S-L. Wang and R.F. Sekerka: Phys. Rev. E, 1996, vol. 53, pp. 3760–76.

    Article  CAS  Google Scholar 

  17. L.X. Liu and J.S. Kirkaldy: Scripta Metall. Mater., 1993, vol. 28, pp. 1029–34.

    Article  CAS  Google Scholar 

  18. S.H. Han and R. Trivedi: Acta. Metall. Mater., 1994, vol. 42, pp. 25–41.

    Article  CAS  Google Scholar 

  19. R. Trivedi and W. Kurz: Int. Mater. Rev., 1994, vol. 39, pp. 59–74.

    Google Scholar 

  20. J.D. Hunt and S-Z. Lu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 611–23.

    CAS  Google Scholar 

  21. R. Trivedi, Yunxue Shen, and Shan Liu: in Advances in Materials and Materials Processing, N. Chakraborty and U.K. Chatterjee, eds., Tata McGraw-Hill Publ. Ltd., New Delhi, 2001, pp. 42–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, R., Shen, Y. & Liu, S. Cellular-to-dendritic transition during the directional solidification of binary alloys. Metall Mater Trans A 34, 395–401 (2003). https://doi.org/10.1007/s11661-003-0340-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0340-5

Keywords

Navigation