Skip to main content

Advertisement

Log in

Materials science under extreme conditions of pressure and strain rate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Solid-state dynamics experiments at very high pressures and strain rates are becoming possible with high-power laser facilities, albeit over brief intervals of time and spatially small scales. To achieve extreme pressures in the solid state requires that the sample be kept cool, with T sample<T melt. To this end, a shockless, plasma-piston “drive” has been developed on the Omega laser, and a staged shock drive was demonstrated on the Nova laser. To characterize the drive, velocity interferometer measurements allow the high pressures of 10 to 200 GPa (0.1 to 2 Mbar) and strain rates of 106 to 108 s−1 to be determined. Solid-state strength in the sample is inferred at these high pressures using the Rayleigh-Taylor (RT) instability as a “diagnostic.” Lattice response and phase can be inferred for single-crystal samples from time-resolved X-ray diffraction. Temperature and compression in polycrystalline samples can be deduced from extended X-ray absorption fine-structure (EXAFS) measurements. Deformation mechanisms and residual melt depth can be identified by examining recovered samples. We will briefly review this new area of laser-based materials-dynamics research, then present a path forward for carrying these solid-state experiments to much higher pressures, P>103 GPa (10 Mbar), on the National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Dorn and S. Rajnak: Trans. TMS-AIME, 1964, vol. 230, p. 1052.

    Google Scholar 

  2. P. Guyot and J.E. Dorn: Can. J. Phys., 1967, vol. 45, p. 983.

    Google Scholar 

  3. U.F. Kocks, A.S. Argon, and M.F. Ashby: Thermodynamics and Kinetics of Slip, Pergamon Press, New York, NY, 1975.

    Google Scholar 

  4. D. Hull and D.J. Bacon: Introduction to Dislocations, 3rd ed., Butterworth-Heinemann, Boston, MA, 1984.

    Google Scholar 

  5. John P. Hirth and Jens Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing Co., Malabar, FL, 1982.

    Google Scholar 

  6. Marc A. Meyers and Lawrence E. Murr: Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Plenum Press, New York, NY, 1981.

    Google Scholar 

  7. Marc A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, Inc., New York, NY, 1994.

    Google Scholar 

  8. Harold J. Frost and Michael F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1982.

    Google Scholar 

  9. G.R. Johnson, J.M. Hoegfeldt, U.S. Lindholm, and A. Nagy: ASME J. Eng. Mater. Technol., 1983b, vol. 105, p. 42.

    Article  Google Scholar 

  10. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, p. 1816.

    Article  CAS  Google Scholar 

  11. F.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1990, vol. 68, p. 915.

    Article  Google Scholar 

  12. P.S. Follansbee and U.F. Kocks: Acta Metall., 1988, vol. 36, p. 81.

    Article  Google Scholar 

  13. K.G. Hoge and A.K. Mukherjee: J. Mater. Sci., 1977, vol. 12, p. 1666.

    Article  CAS  Google Scholar 

  14. G. Regazzoni, U.F. Kocks, and P.S. Follansbee: Acta Metall., 1987, vol. 35, p. 2865.

    Article  CAS  Google Scholar 

  15. D.J. Steinberg and C.M. Lund: J. Appl. Phys, 1989, vol. 65, p. 1528.

    Article  CAS  Google Scholar 

  16. D.J. Steinberg, S.G. Cochran, and M.W. Guinan: J. Appl. Phys, 1980, vol. 51, p. 1498.

    Article  CAS  Google Scholar 

  17. W.G. Wolfer: LLNL Internal Report No. UCRL-ID-136221, Nov. 1999.

  18. S.R. Chen and G.T. Gray: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2994–3006.

    CAS  Google Scholar 

  19. D.L. Preston, D.L. Tonks, and D.C. Wallace: J. Appl. Phys., 2003, vol. 93, p. 211.

    Article  CAS  Google Scholar 

  20. J. Edwards, K.T. Lorenz, B.A. Remington, S. Pollaine, J. Colvin, D. Braun, B.F. Lasinski, D. Reisman, J. McNaney, J.A. Greenough, R. Wallace, H. Louis, and D. Kalantar: 2003, Phys. Rev. Lett., 2004, in press.

  21. T.H. Boehly, R.S. Craxton, T.H. Hinterman, J.H. Kelly, T.J. Kessler, S.A. Kumpan, S.A. Letzring, R.L. McCrory, S.F.B. Morse, W. Seka, S. Skupsky, J.M. Soures, and C.P. Verdon: Rev. Sci. Instrum., 1995, vol. 66, p. 508.

    Article  CAS  Google Scholar 

  22. J.F. Barnes, P.J. Blewett, R.G. McQueen, K.A. Meyer, and D. Venable: J. Appl. Phys., 1974, vol. 45, p. 727; J.F. Barnes, D.H. Janney, R.K. London, K.A. Meyer, and D.H. Sharp: J. Appl. Phys., 1980, vol. 51, p. 4678.

    Article  Google Scholar 

  23. P.M. Celliers, G.W. Collins, L.B. Da Silva, D.M. Gold, and R. Cauble: Appl. Phys. Lett., 1998, vol. 73, p. 1320.

    Article  CAS  Google Scholar 

  24. Dennis Hayes, John Vorthman, and Joe Fritz: LANL Internal Report No. LA-13830-MS, May 2001.

  25. J.A. Paisner, E.M. Campbell, and W.J. Hogan: Fusion Technol., 1994, vol. 26, p. 755.

    CAS  Google Scholar 

  26. W.J. Hogan, E.I. Moses, B.E. Warner, M.S. Sorem, and J.M. Soures: Nucl. Fusion, 2001, vol. 41, p. 567.

    Article  CAS  Google Scholar 

  27. K.T. Lorenz: LLNL, L-021, Livermore, CA, private communication, 2003.

  28. D.H. Kalantar, B.A. Remington, E.A. Chandler, J.D. Colvin, D. Gold, K. Mikaelian, S.V. Weber, L.G. Wiley, J.S. Wark, A.A. Hauer, and M.A. Meyers: J. Impact Eng., 1999, vol. 23, p. 409.

    Article  Google Scholar 

  29. D.H. Kalantar, B.A. Remington, J.D. Colvin, K.O. Mikaelian, S.V. Weber, L.G. Wiley, J.S. Wark, A. Loveridge, A.M. Allen, A. Hauer, and M.A. Meyers: Phys. Plasmas, 2000, vol. 7, p. 1999.

    Article  CAS  Google Scholar 

  30. J. Colvin, M. Legrand, B.A. Remington, G. Schurtz, and S.V. Weber: J. Appl. Phys., 2003, vol. 93, p. 5287.

    Article  CAS  Google Scholar 

  31. K. Mikaelian: Phys. Rev. E, 1996, vol. 54, p. 3676.

    Article  CAS  Google Scholar 

  32. K.S. Budil, T.S. Perry, S.A. Alvarez, D. Hargrove, J.R. Mazuch, A. Nikitin, and P.M. Bell: Rev. Sci. Instrum., 1997, vol. 68, p. 796.

    Article  CAS  Google Scholar 

  33. J. Lipkin and J.R. Asay: J. Appl. Phys., 1977, vol. 48, p. 182.

    Article  CAS  Google Scholar 

  34. A. Kumar, F.E. Hauser, and J.E. Dorn: Acta Metall., 1968, vol. 16, p. 1189.

    Article  CAS  Google Scholar 

  35. M.S. Schneider, B.K. Kad, F. Gregori, D. Kalantar, B.A. Remington, and M.A. Meyers: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2633–46.

    CAS  Google Scholar 

  36. M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, and J.S. Wark: Acta Mater., 2003, vol. 51, p. 1211.

    Article  CAS  Google Scholar 

  37. Dmitriy S. Ivanov, Leonid V. Zhigilei, Eduardo M. Bringa, Maurice De Konig, Bruce A. Remington, Maria Jose Caturla, and Stephen M. Pollaine: Proc. APS Topical Group on Shock Compression of Condensed Matter, 2003, in press.

  38. D. Ivanov and L. Zhigilei: Phys. Rev. Lett., 2003, vol. 91 (10), p. 5701; Phys. Rev. B, 2003, vol. 68 (6), p. 4114.

    Article  CAS  Google Scholar 

  39. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Cllifton, R.L. Martens, and T.F. Kelly: Acta Mater., 2001, vol. 49, p. 4005.

    Article  CAS  Google Scholar 

  40. G. Tas and H.J. Maris: Phys. Rev. B, 1994, vol. 49, p. 15046.

    Article  CAS  Google Scholar 

  41. J.M. McNaney, J. Edwards, R. Becker, T. Lorenz, and B. Remington: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2625–31.

    CAS  Google Scholar 

  42. M.A. Meyers, D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue, and H.-H. Fu: Mater. Sci. Eng., 2002, vol. A322, p. 194.

    CAS  Google Scholar 

  43. D.H. Kalantar, A.M. Alien, F. Gregori, B. Kad, M. Kumar, K.T. Lorenz, A. Loveridge, M.A. Meyers, S. Pollaine, B.A. Remington, and J.S. Wark: Proc. APS SCCM 2001, AIP, vol. 620, pp. 615–18.

  44. L.E. Murr: in Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Marc A. Meyers and Lawrence E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 607–73.

    Google Scholar 

  45. J.W. Swegle and D.E. Grady: J. Appl. Phys., 1983, vol. 58, p. 941.

    Google Scholar 

  46. A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer, B. Holian, D. Kalantar, G. Kyrala, R.W. Lee, P. Lomdahl, M.A. Meyers, D. Paisley, S. Pollaine, B. Remington, D.C. Swift, S. Weber, and J.S. Wark: Phys. Rev. Lett., 2001, vol. 86 (11), p. 2349.

    Article  CAS  Google Scholar 

  47. D.H. Kalantar, J. Belak, E. Bringa, K. Budil, M. Caturla, J. Colvin, M. Kumar, K.T. Lorenz, R.E. Rudd, J. Stolken, A.M. Allen, K. Rosolankova, J.S. Wark, M.A. Meyers, and M. Schneider: Phys. Plasmas, 2003, vol. 10, p. 1569.

    Article  CAS  Google Scholar 

  48. D.C. Konningsberger and R. Prins: X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, John Wiley & Sons, New York, NY, 1988.

    Google Scholar 

  49. P.A. Lee, P.H. Citrin, P. Eisenberger, and B.M. Kincaid: Rev. Mod. Phys., 1981, vol. 53, p. 769.

    Article  CAS  Google Scholar 

  50. J. Rehr and R.C. Albers: Rev. Mod. Phys., 2000, vol. 72, p. 621.

    Article  CAS  Google Scholar 

  51. B. Yaakobi, F.J. Marshall, T.R. Boehly, R.P.J. Town, and D.D. Meyerhofer: J. Optical Soc. America B-Optical Physics, 2003, vol. 20, p. 238.

    CAS  Google Scholar 

  52. B. Yaakobi, D.D. Meyerhofer, T.R. Boehly, J.J. Rehr, R.C. Albers, B.A. Remington, and S. Pollaine: Phys. Rev. Lett., 2004, in press.

  53. B. Yaakobi, D.D. Meyerhofer, T.R. Boehly, J.J. Rehr, B.A. Remington, P.G. Allen, S. Pollaine, and R.C. Albers: Phys. Plasmas, 2004, in press.

  54. E.D. Crozier and A.J. Seary: Can. J. Phys., 1980, vol. 58, p. 1388.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on an invited presentation given in the symposium “Dynamic Deformation: Constitutive Modeling, Grain Size, and Other Effects: In Honor of Prof. Ronald W. Armstrong,” March 2–6, 2003, at the 2003 TMS/ASM Annual Meeting, San Diego, California, under the auspices of the TMS/ASM Joint Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remington, B.A., Bazan, G., Belak, J. et al. Materials science under extreme conditions of pressure and strain rate. Metall Mater Trans A 35, 2587–2607 (2004). https://doi.org/10.1007/s11661-004-0205-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0205-6

Keywords

Navigation