Skip to main content
Log in

Marangoni convection in weld pool in CO2-Ar-shielded gas thermal arc welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Small CO2 additions of 0.092 to 10 vol pct to the Ar shielding gas dramatically change the weld shape and penetration from a shallow flat-bottomed shape, to a deep cylindrical shape, to a shallow concave-bottomed shape, and back to the shallow flat-bottomed shape again with increasing CO2 additions in gas thermal arc (GTA) welding of a SUS304 plate. Oxygen from the decomposition of CO2 transfers and becomes an active solute element in the weld pool and reverses the Marangoni convection mode. An inward Marangoni convection in the weld pool occurs when the oxygen content in the weld pool is over 80 ppm. Lower than 80 ppm, flow will change to the outward direction. An oxide layer forms on the weld pool in the welding process. The heavy oxide layer on the liquid-pool surface will inhibit the inward fluid flow under it and also affects the oxygen transfer to the liquid pool. A model is proposed to illustrate the interaction between the CO2 gas and the molten pool in the welding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Lugwig: Welding J., 1957, vol. 36, pp. 335s-341s.

    Google Scholar 

  2. B.E. Paton: Avtom. Svarka., 1974, No. 6, pp. 1–4.

  3. W.S. Bennett and G.S. Mills: Welding J., 1974, vol. 53, pp. 548s-553s.

    Google Scholar 

  4. W.F. Savage, E.F. Nippes, and G.M. Goodwin: Welding J., 1977, vol. 56, pp. 126s-132s.

    Google Scholar 

  5. C.R. Heiple and J.R. Roper: Welding J., 1981, vol. 60, pp. 143s-145s.

    Google Scholar 

  6. Y. Takeuchi, R. Takagi, and T. Shinoda: Welding J., 1992, vol. 71, pp. 283s-289s.

    Google Scholar 

  7. M. Tanaka, T. Shimizu, H. Terasaki, M. Ushio, F. Koshi-ishi, and C.L. Yang: Sci. Technol. Welding Joining, 2000, vol. 5, pp. 397–402.

    Article  CAS  Google Scholar 

  8. P.J. Modenesi, E.R. Apolinario, and I.M. Pereira: J. Mater. Proc. Technol., 2000, vol. 99, pp. 260–65.

    Article  Google Scholar 

  9. M. Kuo, Z. Sun, and D. Pan: Sci. Technol. Welding Joining, 2001, vol. 6, pp. 17–22.

    Article  Google Scholar 

  10. D. Fan, R. Zhang, Y. Gu, and M. Ushio: Trans. JWRI, 2001, vol. 30, pp. 35–40.

    CAS  Google Scholar 

  11. D.S. Howse and W. Lucas: Sci. Technol. Welding Joining, 2000, vol. 5, pp. 189–93.

    Article  CAS  Google Scholar 

  12. C.R. Heiple and J.R. Roper: Welding J., 1982, vol. 61, pp. 97s-102s.

    Google Scholar 

  13. P.C.J. Anderson and R. Wiktorowicz: Welding Met. Fabr., 1996, vol. 64, pp. 108–09.

    CAS  Google Scholar 

  14. W. Lucas and D. Howse: Welding Met. Fabr., 1996, vol. 64, pp. 11–17.

    CAS  Google Scholar 

  15. D.D. Schwemmer, D.L. Olson, and D.L. Williamson: Welding J., 1979, vol. 58, pp. 153s-160s.

    Google Scholar 

  16. F. Liu, S. Lin, C. Yang, and L. Wu: Trans. China Welding Inst., 2002, vol. 23, pp. 1–4.

    Google Scholar 

  17. T. Paskell, C. Lundin, and H. Castner: Welding J., 1997, vol. 76, pp. 57–62.

    CAS  Google Scholar 

  18. F. Liu, S. Lin, C. Yang, and L. Wu: Trans. China Welding Inst., 2002, vol. 23, pp. 5–8.

    Google Scholar 

  19. Y. Wang and H.L. Tsai: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 501–15.

    CAS  Google Scholar 

  20. S.P. Lu, H. Fujii, H. Sugiyama, M. Tanaka, and K. Nogi: Trans. JWRI, 2003, vol. 32, pp. 79–82.

    CAS  Google Scholar 

  21. B.N. Bad’yanov: Avtom. Svarka., 1975, No. 1, p. 75.

  22. C.R. Heiple and P. Burgardt: Welding J., 1985, vol. 64, pp. 159s-162s.

    Google Scholar 

  23. S.P. Lu, H. Fujii, H. Sugiyama, M. Tanaka, and K. Nogi: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 1590–95.

    CAS  Google Scholar 

  24. S.M. Gurevich and V.N. Zamkov: Avtom. Syarka., 1966, vol. 12, pp. 13–16.

    Google Scholar 

  25. S.P. Lu, H. Fujii, H. Sugiyama, M. Tanaka, and K. Nogi: Mater. Trans., 2002, vol. 43, pp. 2926–31.

    Article  CAS  Google Scholar 

  26. S.P. Lu, H. Fujii, H. Sugiyama, and K. Nogi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1901–07.

    CAS  Google Scholar 

  27. K.C. Mills, B.J. Keene, R.F. Brooks, and A. Shirali: Phil. Trans. R. Soc. London, 1988, vol. 356A, pp. 911–25.

    Google Scholar 

  28. P. Sahoo, T. DebRoy, and M.J. McNallan: Metall. Trans. B, 1988, vol. 19B, pp. 483–91.

    CAS  Google Scholar 

  29. K. Ishizaki, N. Araki, and H. Murai: J. Jpn. Welding Soc., 1965, vol. 34, pp. 146–53.

    Google Scholar 

  30. H.G. Kraus: Welding J., 1989, vol. 68, pp. 269s-79s.

    Google Scholar 

  31. H. Taimatsu, K. Nogi, and K. Ogino: J. High. Temp. Soc., 1992, vol. 18, pp. 14–19.

    CAS  Google Scholar 

  32. N. Ikemiya, J. Umemoto, S. Hara, and K. Ogino: Iron Steel Inst. Jpn. Int., 1993, vol. 33, pp. 156–65.

    CAS  Google Scholar 

  33. R.E. Boni and G. Derge: J. Met., 1956, vol. 8, pp. 53–59.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S., Fujii, H. & Nogi, K. Marangoni convection in weld pool in CO2-Ar-shielded gas thermal arc welding. Metall Mater Trans A 35, 2861–2867 (2004). https://doi.org/10.1007/s11661-004-0234-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0234-1

Keywords

Navigation