Skip to main content
Log in

Dislocation structure and deformation in iron processed by equal-channel-angular pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of dislocation structure in pure Fe during equal-channel-angular pressing (ECAP) is investigated. Also, the effect of the formation of this dislocation structure on deformation and fracture behavior is examined. The results show that intensive dislocation cell blocks are present after one pass and even more after subsequent pressings. The low-energy dislocation structures (LEDS) may have changed into the high-energy dislocation structures (HEDS) in the final several pressings. The high-density array of dislocations plays a significant role in strengthening. The HEDS may cause the materials to lose work-hardening ability and show a cleavage morphology of the fracture surface. A proper subsequent annealing treatment will lead to the evolution of HEDS to LEDS while maintaining little grain growth. This change in the nature of dislocation structures allows ultrafine-grained materials to achieve an excellent combination of high strength and high ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  2. E. Ma: Powder. Metall., 2000, vol. 43, pp. 306–10.

    CAS  Google Scholar 

  3. T.S. Srivatsan, E.J. Lavernia, and F.A. Mohamed: Int. J. Powder Metall., 1990, vol. 26, pp. 321–34.

    CAS  Google Scholar 

  4. G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  5. D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, pp. 3871–86.

    Article  CAS  Google Scholar 

  6. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, and B. Baudelet: Acta Mater., 1996, vol. 44, pp. 4705–12.

    Article  CAS  Google Scholar 

  7. R.K. Islamgaliev, N.F. Yunusova, I.N. Sabirov, A.V. Sergueeva, and R.Z. Valiev: Mater. Sci. Eng., 2001, vols. A319-A321, pp. 877–81.

    Google Scholar 

  8. D.H. Shin, B.C. Kim, Y.-S. Kim, and K.T. Park: Acta Mater., 2000, vol. 48, pp. 2247–55.

    Article  CAS  Google Scholar 

  9. K.T. Park, Y.S. Kim, J.G. Lee, and D.H. Shin: Mater. Sci. Eng., 2000, vol. A293, pp. 165–72.

    CAS  Google Scholar 

  10. D.H. Shin, I. Kim, J. Kim, and K.-T. Park: Acta Mater., 2001, vol. 49, pp. 1285–92.

    Article  CAS  Google Scholar 

  11. D.H. Shin, J.J. Pak, Y.K. Kim, K.-T. Park, and Y.S. Kim: Mater. Sci. Eng., 2002, vol. A325, pp. 31–37.

    CAS  Google Scholar 

  12. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–68.

    Article  CAS  Google Scholar 

  13. B.Q. Han, E.J. Lavernia, and F.A. Mohamed: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 71–83.

    Article  CAS  Google Scholar 

  14. T.G. Nieh, J. Wadsworth, C.T. Liu, G.E. Ice, and K.S. Chung: Mater. Trans., 2001, vol. 42, pp. 613–18.

    Article  CAS  Google Scholar 

  15. T.R. Malow and C.C. Koch: Acta Mater., 1998, vol. 46, pp. 6459–73.

    Article  CAS  Google Scholar 

  16. N. Hansen: Mat. Sci. Technol., 1990, vol. 6, pp. 1039–47.

    CAS  Google Scholar 

  17. D. Kuhlmann-Wilsdorf: Phil. Mag. A, 1999, vol. 79, pp. 955–1008.

    Article  CAS  Google Scholar 

  18. D. Kuhlmann-Wilsdorf: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2519–39.

    Article  CAS  Google Scholar 

  19. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64.

    CAS  Google Scholar 

  20. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe: Acta Mater., 2001, vol. 49, pp. 1497–1505.

    Article  CAS  Google Scholar 

  21. A.A. Nazarov, A.E. Romanov, and R.Z. Valiev: Acta Metall. Mater., 1993, vol. 41, pp. 1033–40.

    Article  CAS  Google Scholar 

  22. C.H. Moelle and H.J. Fecht: Nanostruct. Mater., 1995, vol. 6, pp. 421–24.

    Article  CAS  Google Scholar 

  23. T.H. Courtney: Mechanical Behavior of Materials, 2nd ed., McGraw-Hill Higher Education, New York, NY, 2000.

    Google Scholar 

  24. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1982.

    Google Scholar 

  25. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Acta Metall. Mater., 1994, vol. 42, pp. 2467–75.

    Article  CAS  Google Scholar 

  26. Y.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, and R.Z. Valiev: Scripta Mater., 2001, vol. 44, pp. 873–78.

    Article  CAS  Google Scholar 

  27. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng., 2001, vol. A303, pp. 82–89.

    CAS  Google Scholar 

  28. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B.Q., Lavernia, E.J. & Mohamed, F.A. Dislocation structure and deformation in iron processed by equal-channel-angular pressing. Metall Mater Trans A 35, 1343–1350 (2004). https://doi.org/10.1007/s11661-004-0309-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0309-z

Keywords

Navigation