Skip to main content
Log in

Effect of prior-austenite grain size and transformation temperature on nodule size of microalloyed hypereutectoid steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of prior-austenite grain size and transformation temperature on nodule size and colony size of hypereutectoid steels containing 1 pct carbon with different levels of vanadium and silicon was investigated. Specimens of the various steels were thermally processed at various temperatures ranging from 900 °C to 1200 °C and transferred to salt bath conditions at 550 °C, 580 °C, and 620 °C to examine the structural evolution of pearlite. The heat-treatment work showed that for only the hypereutectoid steel without vanadium there was a continuous grain boundary cementite network, the thickness of which increased with increasing reheat temperature. Analysis of the thermally processed hypereutectoid steels also indicated that the prior-austenite grain size and transformation temperature controlled the nodule size, while the colony size was dependent on the latter only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Khalid, D.A. Gilroy, and D.V. Edmonds: Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Proc., Pittsburgh, PA, 1992, A.J. DeArdo, ed., TMS-AIME, Warrendale, PA, 1992, pp. 67–75.

    Google Scholar 

  2. E.E. Laufer and D.M. Fegredo: Can. Met. Q., 1983, vol. 22, pp. 193–99.

    CAS  Google Scholar 

  3. F.B. Pickering and B. Garbarz: Mater. Sci. Technol., 1989, vol. 5, pp. 227–37.

    CAS  Google Scholar 

  4. G.L. Dunlop, C.J. Carlsson, and G. Frimodig: Metall. Trans. A, 1978, vol. 9A, pp. 261–66.

    CAS  Google Scholar 

  5. T.D. Mottishaw and G.D.W. Smith: HSLA Steels Technology and Applications, Inst. Conf. Proc., ASM INTERNATIONAL, Philadelphia, PA, 1984, pp. 163–75.

    Google Scholar 

  6. T. Tarui, T. Takahashi, S. Ohashi, and R. Uemori: I & SM 1994, pp. 25–31.

  7. J.R. Vilella, G.E. Guellich, and E.C. Bain: 17th Annual Convention of the Society, Transactions of the A.S.M., Chicago IL, 1935, pp. 225–61.

    Google Scholar 

  8. F.C. Hull and R.F. Mehl: Trans. ASM, 1942, vol. 30, pp. 381–424.

    CAS  Google Scholar 

  9. N.T. Belaiew: J. Iron Steel Inst., 1922, vol. 60, pp. 201–39.

    Google Scholar 

  10. G.E. Pellisier, M.F. Hawkes, W.A. Johnson, and R.F. Mehl: Trans. ASM, 1942, vol. 29, pp. 1049–86

    Google Scholar 

  11. F.C. Hull, R.A. Colten, and R.F. Mehl: Trans. AIME, 1942, vol. 150, pp. 185–207.

    Google Scholar 

  12. K. Han, T.D. Mottishaw, G.D.W. Smith, D.V. Edmonds, and A.G. Stacey: Mater. Sci. Eng, 1995, vol. 190A, pp. 207–14.

    Google Scholar 

  13. K. Han, T.D. Mottishaw, G.D.W. Smith, and D.V. Edmonds: Mater. Sci. Technol. 1994, vol. 10, pp. 955–63.

    CAS  Google Scholar 

  14. F.A. Khalid and D.V. Edmonds: Scripta Metall. Mater., 1994, vol. 30, pp. 1251–55.

    Article  CAS  Google Scholar 

  15. ASTM standard E112-96, “Standard Test Methods for Determining Average Grain Size,” Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1996, vol. 03.01, pp. 251–74.

    Google Scholar 

  16. E.E. Underwood: Quantitative Stereology, Addison-Wesley, Reading, MA, 1970, pp. 73–75.

    Google Scholar 

  17. R.W.K. Honeycombe: Steels Microstructure and Properties, Edward Arnold, London, 1981.

    Google Scholar 

  18. S. Serajzadeh and A.K. Taheri: Mater. Lett., 2002, vol. 56, pp. 984–89.

    Article  CAS  Google Scholar 

  19. S. Zajac, T. Siweck, W.B. Hutchinson, and R. Lagneborg: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 1130–39.

    CAS  Google Scholar 

  20. A.M. Elwazri, P. Wanjara, and S. Yue: Mater. Sci. Eng., 2003, vol. 339A, pp. 209–15.

    Google Scholar 

  21. A.M. Elwazri, P. Wanjara, and S. Yue: Iron Steel Inst. Jpn., 2004, vol. 45, pp. 162–70.

    Google Scholar 

  22. A.M. Elwazri: Ph.D. Thesis, McGill University, Montreal, 2004.

    Google Scholar 

  23. J.G. Zimmerman, R.H. Aboron, and E.C. Bain: Trans. ASM, 1937, vol. 25, pp. 755–87.

    CAS  Google Scholar 

  24. K. Han, G.D.W. Smith, and D.V. Edmonds: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1617–31.

    CAS  Google Scholar 

  25. K. Han: Scripta Metall., 1993, vol. 28, pp. 699–702.

    Article  CAS  Google Scholar 

  26. T. Wada, H. Wada, J.F. Elliot, and J. Chipman: Metall. Trans., 1972, vol. 3, pp. 1657–62.

    CAS  Google Scholar 

  27. A.R. Marder and B.L. Bramfitt: Metall Trans., 1975, vol. 6, pp. 2009–14.

    Article  Google Scholar 

  28. A.R. Marder and B.L. Bramfitt: Metall Trans., 1976, vol. 7, pp. 365–72.

    Google Scholar 

  29. B. Garbarz and F.B. Pickering: Scripta Metall., 1987, vol. 21, pp. 249–53.

    Article  Google Scholar 

  30. B. Garbarz and R. Kuziak: Microalloying ’95, ISS, Pittsburgh, PA, 1995, 409–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elwazri, A.M., Yue, S. & Wanjara, P. Effect of prior-austenite grain size and transformation temperature on nodule size of microalloyed hypereutectoid steels. Metall Mater Trans A 36, 2297–2305 (2005). https://doi.org/10.1007/s11661-005-0102-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0102-7

Keywords

Navigation