Skip to main content
Log in

Analysis of the γα transformation in a C-Mn steel by phase-field modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article deals with the austenite (γ) decomposition to ferrite (α) during cooling of a 0.10 wt pct C-0.49 wt pct Mn steel. A phase-field model is used to simulate this transformation. The model provides qualitative information on the microstructure that develops on cooling and quantitative data on both the ferrite fraction formed and the carbon concentration profile in the remaining austenite. The initial austenitic microstructure and the ferrite nucleation data, derived by metallographic examination and dilatometry, are set as input data of the model. The interface mobility is used as a fitting parameter to optimize the agreement between the simulated and experimental ferrite-fraction curve derived by dilatometry. A good agreement between the simulated α-γ microstructure and the actual α-pearlite microstructure observed after cooling is obtained. The derived carbon distribution in austenite during transformation provides comprehension of the nature of the transformation with respect to the interface-controlled or diffusion-controlled mode. It is found that, at the initial stage, the transformation is predominantly interface-controlled, but, gradually, a shift toward diffusion control takes place to a degree that depends on cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950–53.

    Article  CAS  Google Scholar 

  2. H.K.D.H. Bhadeshia, L.E. Svennsson, and B. Gretoft: Acta Metall., 1985, vol. 33, pp. 1271–83.

    Article  CAS  Google Scholar 

  3. R.A. Vandermeer: Acta Metall. Mater. 1990, vol. 38, pp. 2461–70.

    Article  CAS  Google Scholar 

  4. Y. van Leeuwen, T.A. Kop, J. Sietsma, and S. van der Zwaag: J. Phys. IV. France, 1999, vol. 9, pp. 401–09.

    Google Scholar 

  5. T.A. Kop, Y. van Leeuwen, J. Sietsma, and S. van der Zwaag: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. 713–18.

    CAS  Google Scholar 

  6. Y. van Leeuwen, J. Sietsma, and S. van der Zwaag: Iron Steel Inst. Jpn. Int., 2003, vol. 43, pp. 767–73.

    Google Scholar 

  7. J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.

    Article  CAS  Google Scholar 

  8. G. Gaginalp: Phys. Rev. A, 1989, vol. 39, pp. 5887–96.

    Article  Google Scholar 

  9. R. Kobayashy: Physica D, 1993, vol. 66, pp. 410–23.

    Article  Google Scholar 

  10. J.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, and R.F. Sekerka: Phys. Rev. E, 1993, vol. 48, pp. 2016–24.

    Article  CAS  Google Scholar 

  11. J.B. Collins and H. Levine: Phys. Rev. B, 1985, vol. 31, pp. 6119–22.

    Article  CAS  Google Scholar 

  12. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden: Phys. Rev. A, 1992, vol. 45, pp. 7424–39.

    Article  CAS  Google Scholar 

  13. G. Gaginalp and W. Xie: Phys. Rev. E, 1993, vol. 48, pp. 1897–1909.

    Article  Google Scholar 

  14. J.A. Warren and W.J. Boettinger: Acta Metall. Mater., 1996, vol. 43, pp. 689–703.

    Google Scholar 

  15. A.A. Wheeler, G.B. McFadden, and W.J. Boettinger: Proc. R. Soc. London Ser. A, 1996, vol. 452, p. 495.

    Article  CAS  Google Scholar 

  16. A. Karma: Phys. Rev. E, 1994, vol. 49, pp. 2245–50.

    Article  CAS  Google Scholar 

  17. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1998, vol. 58, pp. 3316–23.

    Article  CAS  Google Scholar 

  18. I. Steinbach, F. Pezzolla, B. Nestler, M. Seeßelberg, R. Prieler, G.J. Schmitz, and J.L.L. Rezende: Physica D, 1996, vol. 94, pp. 135–47.

    Article  Google Scholar 

  19. J. Tiaden, B. Nestler, H.J. Diepers, and I. Steinbach: Physica D, 1998, vol. 115, pp. 73–86.

    Article  CAS  Google Scholar 

  20. D.H. Yeon, P.R. Cha, and J.K. Yoon: Scripta Mater., 2001, vol. 45, pp. 661–68.

    Article  CAS  Google Scholar 

  21. G. Pariser, P. Shaffnit, I. Steinbach, and W. Bleck: Steel Res., 2001, vol. 72, pp. 354–60.

    CAS  Google Scholar 

  22. T.A. Kop, J. Sietsma, and S. van der Zwaag: J. Mater. Sci., 2001, vol. 36, pp. 519–26.

    Article  CAS  Google Scholar 

  23. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  24. G.P. Krielaart and S. van der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–18.

    CAS  Google Scholar 

  25. M. Militzer: Material Science & Technology 2003, Austenite Formation and Decomposition, Chicago, IL, Iron and Steel Society, TMS, 2003, pp. 195–211.

    Google Scholar 

  26. W.F. Lange, M. Enomoto, and H.I. Aaronson: Metall. Trans. A, 1988, vol. 19A, pp. 427–40.

    CAS  Google Scholar 

  27. Handbook of Chemistry and Physics, CRC Press Inc., Boca Raton, FL, 1989.

  28. M.G. Mecozzi, J. Sietsma, S. van der Zwaag, M. Apel, P. Schaffnit, and I. Steinbach: Material Science & Technology 2003, Austenite Formation and Decomposition, Chicago, IL, Iron and Steel Society, TMS 2003, pp. 353–66.

    Google Scholar 

  29. T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Technol., 2001, vol. 17, pp. 1569–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mecozzi, M.G., Sietsma, J., van der Zwaag, S. et al. Analysis of the γα transformation in a C-Mn steel by phase-field modeling. Metall Mater Trans A 36, 2327–2340 (2005). https://doi.org/10.1007/s11661-005-0105-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0105-4

Keywords

Navigation