Skip to main content
Log in

Assessment of a powder metallurgical processing route for refractory metal silicide alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A powder metallurgical (PM) processing route for the manufacturing of two different refractory metal silicide alloys comprising inert gas atomization of presintered bars, hot isostatic pressing, and hot extrusion (reduction in cross section of 6:1) was established. The mechanical properties between room temperature and 1200 °C of the PM-processed Mo-3Si-1B and Nb-24Ti-20Si-5Cr-3Hf-2Al alloys (in wt pct) were assessed with tensile tests vs a state-of-the-art Ni-base single crystalline alloy (CMSX 4) and a directionally solidified (MASC) niobium-base silicide alloy, respectively. The microstructural characterization of both the hot-isostatically pressed and extruded materials was carried out applying scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) analysis. The Mo-Si-B alloy is characterized by an intermetallic matrix surrounding globular Mo particles in the hot isostatic press and a nearly continuous molybdenum solid solution matrix with dispersed intermetallic particles in the hot-extruded condition. Hot extrusion results in a substantial reduction of the DBTT of about 200 °C and tensile strengths superior to CMSX 4 at temperatures above 1000 °C. In the case of the Nb-base silicide alloy, a niobium solid solution surrounding intermetallic particles with Nb5Si3-type structure characterizes the final alloy. In the intermediate temperature range of 500 °C to 816 °C, a strength level equivalent to the directionally solidified MASC alloy was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.S. Walston, K.S. O’Hara, E.W. Ross, T.S. Pollock, and W.H. Murphy: Proc. Conf. Superalloys 1996, R.D. Kissinger et al., eds., TMS, Warrendale, PA, 1996, pp. 27–34.

    Google Scholar 

  2. S. Bose and J. DeMasi-Marcin: Thermal Barrier Coating Workshop NASA Lewis Research Center, Cleveland, OH, 1995, NASA Conf. Publication 3312, pp. 63–77.

    Google Scholar 

  3. D.M. Dimiduk and J.H. Perepezko: MRS Bull., 2003, vol. 28, pp. 639–45.

    CAS  Google Scholar 

  4. R. Eck and J. Tinzl: Proc. Symp. AMAX Research Center, K.H. Riska, M. Semchysten, and E.P. Whelan, eds., AMAX Research Center, Ann Arbor, MI, 1985, pp. 21–28.

    Google Scholar 

  5. H. Nowotny, R. Kiefer, and F. Benesovsky: Plansee Berichte Pulvermetallurgie, 1957, vol. 5, pp. 86–93.

    CAS  Google Scholar 

  6. D.M. Berczik: U.S. Patent 5,595,616, 1997.

  7. D.M. Berczik: U.S. Patent 5,693,616, 1997.

  8. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Scripta Mater., 2004, vol. 50, pp. 459–64.

    Article  CAS  Google Scholar 

  9. M.R. Jackson and B.P. Bewlay: U.S. Patent 5,833,773, Nov. 10, 1998.

  10. M.R. Jackson and B.P. Bewlay: U.S. Patent 5,932,033, Aug. 3, 1999.

  11. M.R. Jackson and B.P. Bewlay: U.S. Patent 5,942,055, Aug 24, 1999.

  12. M.R. Jackson, B.P. Bewlay, and J.-C Zhao: U.S. Patent 6,419,765, Jul. 16, 2002.

  13. M.R. Jackson, B.P. Bewlay, and J.-C Zhao: U.S. Patent 6,428,910, Aug. 6, 2002.

  14. P.R. Subramian, M.G. Mendiratta, and D.M. Dimiduk: U.S. Patent 5,741,376, Apr. 21, 1998.

  15. B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: JOM, 1997, Aug., pp. 44–45.

  16. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Proc. 1997 Conf. on Processing and Design Issues in High Temperature Materials, N.S. Stoloff and R.H. Jones, eds., TMS, Warrendale, PA, 1997, pp. 247–62.

    Google Scholar 

  17. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3801–08.

    Article  CAS  Google Scholar 

  18. B.P. Bewlay, M.R. Jackson, J.-C. Zhao, P.R. Subramian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bull., 2003, vol. 28, pp. 646–53.

    CAS  Google Scholar 

  19. M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–32.

    Article  CAS  Google Scholar 

  20. J.-C. Zhao, B.P. Bewlay, M.R. Jackson, and L.A. Peluso: Proc. 2001 Int. Symp. on Structural Intermetallics 2001, K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., TMS, Warrendale, PA, 2001, pp. 483–91.

    Google Scholar 

  21. P. Jéhanno, M. Heilmaier, and H. Kestler: Intermetallics, 2004, vol. 12, pp. 1005–09.

    Article  Google Scholar 

  22. G.J. Richardson, D.N. Hawkins, and C.M. Sellars: Worked Examples in Metalworking, The Institute of Metals, London, 1985.

    Google Scholar 

  23. C.A. Nunes, R. Sakidja, Z. Dong, and J.H. Perepezko: Intermetallics, 2000, vol. 8, p. 327–37.

    Article  CAS  Google Scholar 

  24. R.M. German: Powder Metallurgy Science, Metal Powder Industry Federation, Princeton, NJ, 1984.

    Google Scholar 

  25. H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  26. O. Kerle: In Plansee Catalogue, Refractory Metals and Alloys, 2002.

  27. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, New York, NY, 1982.

    Google Scholar 

  28. L. Northcott: Molybdenum, Butterworths Scientific Publications, London, 1956.

    Google Scholar 

  29. F. Schubert, H.-J. Penkalla, and L. Singheiser: Z. Metallkd., 2003, no. 94, vol. 6, pp. 705–10.

    Google Scholar 

  30. G.A. Geach and J.R. Hughes: Plansee Seminar Proc. 1955, Pergamon Press Ltd., London, 1956, pp. 245–53.

    Google Scholar 

  31. R.I. Jaffee, C.T. Sims, and J.J. Harwood: Plansee Seminar Proc. 1958, Pergamon Press Ltd., London, 1959, pp. 380–411.

    Google Scholar 

  32. B.P. Bewlay, R.R. Bishop, and M.R. Jackson: Z. Metallkd., 1996, no. 90, vol. 6, pp. 413–22.

    Google Scholar 

  33. S. Woodard, R. Raban, J. Myers, and D. Berczik: EP 1382700A1. European Patent Application 2004.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jéhanno, P., Kestler, H., Venskutonis, A. et al. Assessment of a powder metallurgical processing route for refractory metal silicide alloys. Metall Mater Trans A 36, 515–523 (2005). https://doi.org/10.1007/s11661-005-0165-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0165-5

Keywords

Navigation