Skip to main content

Advertisement

Log in

Residual stresses in a quenched superalloy turbine disc: Measurements and modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of neutron diffraction measurements have been carried out to determine the elastic residual strains deep within a large, 40-cm-diameter, forged and water-quenched IN718 aeroengine compressor disc. Neutron path lengths of up to 6 cm were necessary to probe the thickest parts of the forging, and three-dimensional strain and stress components have been derived for the first time in such a large superalloy specimen. Measurements have been compared with the results from a coupled thermal-mechanical finite-element model of the quenching process, based upon appropriate temperature-dependent material properties, with some success. The general residual stress state in the disc is one of near-surface compression, balanced by tension within the disc interior. The steepest stress and strain gradients occur in the transition region from compression to tension, about 1 cm below the surface all around the disc. The largest stress component is in the disc tangential direction and reaches a magnitude of 400 to 500 MPa near the disc surface and at its core. This exceeds the effective yield stress because of the presence of significant hydrostatic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Xu, W. Zhang, and P.D. Lee: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1805–15.

    Article  CAS  Google Scholar 

  2. A. Kermanpur, W. Wang, P.D. Lee, and M. McLean: Mater. Sci. Technol., 2003, vol. 19, pp. 859–65.

    Article  CAS  Google Scholar 

  3. C.A. Dandre, S.M. Roberts, R.W. Evans, and R.C. Reed: Mater. Sci. Technol., 2000, vol. 16, pp. 14–25.

    Article  CAS  Google Scholar 

  4. G.S. Shen, S.L. Semiatin, and R. Shivpuri: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1795–1803.

    CAS  Google Scholar 

  5. A. Kermanpur, S. Tin, P.D. Lee, and M. McLean: JOM, 2004, vol. 56, pp. 72–78.

    CAS  Google Scholar 

  6. S. Tin, P.D. Lee, A. Kermanpur, M.A. Rist, and M. McLean: Metall. Mater. Trans A, 2005, vol. 36A, pp. 2493–504.

    Article  CAS  Google Scholar 

  7. J.A. Dann, M.R. Daymond, L. Edwards, J.A. James, and J.R. Santisteban: Physica B, 2004, vol. 350, pp. e511-e514.

    Article  CAS  Google Scholar 

  8. F. Abbasi and A.J. Fletcher: Mater. Sci. Technol., 1985, vol. 1, pp. 830–37.

    Google Scholar 

  9. Y. Nagasaka, J.K. Brimacombe, E.B. Hawbolt, I.V. Samarasekera, B. Hernandezmorales, and S.E. Chidiac: Metall. Trans A, 1993, vol. 24A, pp. 795–808.

    CAS  Google Scholar 

  10. D.Y. Ju, R. Mukai, N. Minakawa, Y. Morii, and A. Moriai: Key Eng. Mater., 2004, vols. 270–273, pp. 139–46.

    Article  Google Scholar 

  11. R.A. Wallis and P.R. Bhowal: Superalloys 1988, TMS, Warrendale, PA, 1988, pp. 525–34.

    Google Scholar 

  12. J.M. Franchet, F. Devy, P.E. Mosser, Y. Honnorat, and A. Benallal: Superalloys 1992, TMS, Warrendale, PA, 1992, pp. 73–82.

    Google Scholar 

  13. D. Dye, K.T. Conlon, and R.C. Reed: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1703–13.

    CAS  Google Scholar 

  14. U. Cihak, P. Staron, W. Marketz, H. Leitner, J. Tockner, and H. Clemens: Z. Metallkd., 2004, vol. 95, pp. 663–67.

    CAS  Google Scholar 

  15. M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, and T. Lorentzen: J. Appl. Phys., 1997, vol. 82, pp. 1554–62.

    Article  CAS  Google Scholar 

  16. M.R. Daymond: J. Appl. Phys., 2004, vol. 96, pp. 4263–72.

    Article  CAS  Google Scholar 

  17. J.A. James, J.R. Santisteban, L. Edwards, and M.R. Daymond: Physica B, 2004, vol. 350, pp. e743-e746.

    Article  CAS  Google Scholar 

  18. DEFORM 2D, Version 8.1, Scientific Forming Technologies Corporation, Columbus, OH, 2004.

  19. J. Kolts: in Superalloy 718—Metallurgy and Applications, TMS, Warrendale, PA, 1989, pp. 329–44.

    Google Scholar 

  20. Anon: Adv. Mater. Processes, 2000, vol. 158, pp. 89–102.

  21. D. Dye, O. Hunziker, S.M. Roberts, and R.C. Reed: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1713–25.

    Article  CAS  Google Scholar 

  22. “High-Temperature High-Strength Nickel-Base Alloys,” Technical Report No. 393, Nickel Development Institute, 1995, pp. 1–52.

  23. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, United Kingdom, 2002, pp. 181–90.

    Google Scholar 

  24. M. Kobayashi, A. Ono, M. Otsuki, H. Sakate, and F. Sakuma: Int. J. Thermophys., 1999, vol. 20, pp. 299–308.

    Article  CAS  Google Scholar 

  25. ASM Handbook Volume 4: Heat Treating, ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 803–14.

  26. S. Sen, B. Aksakal, and A. Ozel: Int. J. Mech. Sci., 2000, vol. 42, pp. 2013–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rist, M.A., James, J.A., Tin, S. et al. Residual stresses in a quenched superalloy turbine disc: Measurements and modeling. Metall Mater Trans A 37, 459–467 (2006). https://doi.org/10.1007/s11661-006-0017-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0017-y

Keywords

Navigation