Skip to main content

Advertisement

Log in

Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper develops an experimentally validated computational model based on crystal plasticity for the analysis of two-phase α/β Ti-6242 polycrystalline alloys. A rate-dependent elastic-crystal plasticity model is incorporated in this model to accommodate anisotropy in material behavior and tension-compression asymmetry inherent to this alloy. A combination of microtesting, orientation imaging microscopy, computational simulations, and minimization process, involving genetic algorithms, is implemented in this study for careful characterization and calibration of the material parameters. Size effects are considered in this analysis through a simple scaling process. A homogenized equivalent model of the primary α with transformed β colonies is developed for incorporation in the Ti-6242 FE model. The polycrystalline Ti-6242 computational model incorporates accurate phase volume fractions, as well as statistically equivalent orientation distributions to those observed in the orientation imaging microscopy scans. The effects of orientation, misorientations, and microtexture distributions are investigated through simulations by this computational model. The model is used to simulate constant strain rate and creep tests in compression and tension, and the results are compared with experiments. The effects of microstructure and creep-induced load-shedding on the localization of microstructural stresses and strains are studied for potential crack initiation criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Froes, ed.: Non-Aerospace Applications of Titanium, TMS, Warrendale, PA, 1998.

    Google Scholar 

  2. M.A. Imam and C.M. Gilmore: Metall. Trans. A, 1979, vol. 10A, pp. 419–25.

    CAS  Google Scholar 

  3. H.P. Chu: J. Mater., 1970, vol. 5, pp. 633–42.

    CAS  Google Scholar 

  4. B.C. Odegard and A.W. Thompson: Metall. Trans., 1974, vol. 5, pp. 1207–13.

    CAS  Google Scholar 

  5. W.H. Miller, R.T. Chen, and E.A. Starke: Metall. Trans. A, 1987, vol. 18A, pp. 1451–67.

    CAS  Google Scholar 

  6. T. Neeraj, D.H. Hou, G.S. Daehn, and M.J. Mills: Acta Mater., 2000, vol. 48, pp. 1225–38.

    Article  CAS  Google Scholar 

  7. T. Neeraj and M.J. Mills: Mater. Sci. Eng. A, 2001, vol. 319, pp. 415–19.

    Article  Google Scholar 

  8. A.W. Thompson and B.C. Odegard: Metall. Trans., 1973, vol. 4, pp. 899–908.

    CAS  Google Scholar 

  9. S. Balasubramanian and L. Anand: Acta Mater., 2002, vol. 50, pp. 133–48.

    Article  CAS  Google Scholar 

  10. G.B. Sarma and P.R. Dawson: Acta Mater., 1996, vol. 40, pp. 1937–53.

    Article  Google Scholar 

  11. P.R. Dawson and E.B. Marin: Adv. Appl. Mech., 1998, vol. 34, pp. 77–169.

    Google Scholar 

  12. D.P. Mika and P.R. Dawson: Mater. Sci. Eng. A, 1998, vol. 257, pp. 62–76.

    Article  Google Scholar 

  13. D. Pierce, R.J. Asaro, and A. Needleman: Acta Metall. Mater., 1983, vol. 31, pp. 1951–75.

    Article  Google Scholar 

  14. R.J. Asaro and A. Needleman: Scripta Metall. Mater., 1984, vol. 18, pp. 429–35.

    CAS  Google Scholar 

  15. S.V. Harren and R.J. Asaro: J. Mech. Phys. Solids, 1989, vol. 37, pp. 191–232.

    Article  Google Scholar 

  16. C.L. Xie, S. Ghosh, and M. Groeber: J. Eng. Mater. Tech., 2004, vol. 126, pp. 339–52.

    Article  CAS  Google Scholar 

  17. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids, 1992, vol. 40, pp. 537–69.

    Article  CAS  Google Scholar 

  18. M. Kothari and L. Anand: J. Mech. Phys. Solids, 1998, vol. 46, pp. 51–67.

    Article  CAS  Google Scholar 

  19. M. Grujicic and S. Batchu: J. Mater. Sci., 2001, vol. 36, pp. 2851–63.

    Article  CAS  Google Scholar 

  20. O.K. Kad, M. Dao, and R.J. Asaro: Mater. Sci. Eng. A, 1995, vol. 192–193, pp. 97–103.

    Google Scholar 

  21. A. Staroselsky and L. Anand: Int. J. Plasticity, vol. 19, 2003, pp. 1843–60.

    Article  CAS  Google Scholar 

  22. O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Int. J. Plasticity, vol. 21, 2005, pp. 691–722.

    Article  CAS  Google Scholar 

  23. T. Buchheit, G. Wellman, and C. Battaile: Int. J. Plasticity, vol. 21, 2005, pp. 221–49.

    Article  Google Scholar 

  24. R.E. Loge, H.S. Turkmen, M.P. Miller, R. Rogge, and P.R. Dawson: Model. Simulation Mater. Sci. Eng., vol. 12, 2004, pp. 633–63.

    Article  Google Scholar 

  25. S. Li, P.V. Houtte, and S. Kalidindi: Model. Simulation Mater. Sci. Eng., vol. 12, 2004, pp. 845–70.

    Article  CAS  Google Scholar 

  26. A.A. Salem, S.R. Kalindidi, and S.L. Semiatin: Acta Mater., vol. 53, 2005, pp. 3495–502.

    Article  CAS  Google Scholar 

  27. V. Hasija, S. Ghosh, M.J. Mills, and D.S. Joseph: Acta Mater., 2003, vol. 51, pp. 4533–49.

    Article  CAS  Google Scholar 

  28. M.F. Savage: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2000.

    Google Scholar 

  29. S. Suri, G.B. Vishwanathan, T. Neeraj, D.H. Hou, and M.J. Mills: Acta Mater., 1999, vol. 47, pp. 1019–34.

    Article  CAS  Google Scholar 

  30. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand: Philos. Trans. R. Soc. London, Ser. A, 1992, vol. 341, pp. 443–77.

    CAS  Google Scholar 

  31. S. Harren, T.C. Lowe, R.J. Asaro, and A. Needleman: Philos. Trans. R. Soc. London, Ser. A, 1989, vol. 328, pp. 443–500.

    Google Scholar 

  32. ABAQUS reference manuals: Hibbit, Karlsson and Sorenson, Inc., Providence, RI, 2001.

  33. M.F. Savage, J. Tatalovich, and M.J. Mills: Philos. Mag. A, 2004, vol. 84 (11), pp. 1127–54.

    Article  CAS  Google Scholar 

  34. M.F. Savage, J. Tatalovich, M.D. Uchic, M. Zupan, K.J. Hemker, and M.J. Mills: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 398–403.

    Google Scholar 

  35. T. Neeraj, M.F. Savage, J. Tatalovich, L. Kovarik, R.W. Hayes, and M.J. Mills: Philos. Mag., 2005, vol. 85 (2–3), pp. 279–95.

    Article  CAS  Google Scholar 

  36. V. Sinha, M.J. Mills, and J.C. Williams: Metall. Trans. A, 2004, vol. 35A, pp. 3141–48.

    Article  CAS  Google Scholar 

  37. D. Goldberg: Genetic Algorithm in Search Optimization and Machine Learning, 1st ed., Addison Wesley, Reading, MA, 1989.

    Google Scholar 

  38. D.L. Carroll: AIAA J., 1996, vol. 34, pp. 338–46.

    Article  CAS  Google Scholar 

  39. D. Roundy, C.R. Krenn, L. Marvin, L. Cohen, and J.W. Morris: Philos. Mag. A, 2001, vol. 81, pp. 1725–47.

    Article  CAS  Google Scholar 

  40. G.I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307–24.

    Google Scholar 

  41. C.L. Xie and E. Nakamachi: J. Mater. Process Tech., 2002, vol. 122, pp. 104–11.

    Article  CAS  Google Scholar 

  42. A. Kumar and P.R. Dawson: Comput. Methods Appl. Mech. Eng., 1992, vol. 153, pp. 153–259.

    Google Scholar 

  43. U.F. Kocks, C.N. Tomé, and H.R. Wenk: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  44. A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, and B. Yamrom: Titanium ’95: Science and Technology, 1995, pp. 1116–24.

  45. D. Norfleet: The Ohio State University, Columbus, OH, unpublished research, 2005.

  46. M.R. Bache and W.J. Evans: J. Eng. Gas Turbines and Power, 2003, vol. 125, pp. 241–45.

    Article  CAS  Google Scholar 

  47. A. Arsenlis and D.M. Parks: Acta Mater., 1999, vol. 47 (5), pp. 1597–611.

    Article  CAS  Google Scholar 

  48. L.P. Evers: Ph.D. Dissertation, TU Eindhoven, Eindhoven, The Netherlands, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deka, D., Joseph, D.S., Ghosh, S. et al. Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall Mater Trans A 37, 1371–1388 (2006). https://doi.org/10.1007/s11661-006-0082-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0082-2

Keywords

Navigation