Skip to main content
Log in

Fatigue anisotropy in cross-rolled, hardened medium carbon steel resulting from MnS inclusions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Anisotropy of forged steel components is especially adverse when it concerns rotationally symmetric components. Manganese sulfides (MnS) in steels may be desired for their improvement of machining properties; however, they also deteriorate fatigue behavior. A quantification of the effect of MnS on anisotropy is necessary to find an optimum for component dimensioning. To isolate the influence of MnS on anisotropy only, high cleanness of the test material is required. The test material in the current investigation was molten in a vacuum furnace to high-cleanness composition. Materials with two different S levels were produced to detect variations in anisotropy according to amount, shape, and distribution of the MnS inclusions. The two batches were cross-rolled to plates with a deformation ratio of 4.5. The MnS phase constitutes, upon forging or rolling, pancake-shaped inclusions. In the case of cross-rolling, an in-plane rotational symmetry of the inclusions could be created. The shape and size of these inclusions are essential for the mechanical behavior of the material. Push-pull fatigue testing was performed in longitudinal (in plane) and short transversal directions relative to the rolling plane. The results showed strong anisotropy of the fatigue behavior with inferior performance in short transverse directions where the principal stress is perpendicular to the flattened inclusions. The anisotropy was somewhat more pronounced for the high-S material, resulting from a different fatigue crack growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kaynak, A. Ankara, and T.J. Baker: Mater. Sci. Technol. (UK), 1996, vol. 12, pp. 557–62.

    CAS  Google Scholar 

  2. R. Kiessling: Nonmetallic Inclusions and Their Effects on the Properties of Ferrous Alloys, in Encyclopedia of Materials: Science and Technology, Bernhard Ilschner, ed., Elsevier Science Ltd., Oxford, UK, 2001, pp. 6278–83.

    Google Scholar 

  3. W.C. Leslie: ISS Trans., 1983, vol. 2, pp. 1–24.

    CAS  Google Scholar 

  4. I.C. Mayes and T.J. Baker: Mater. Sci. Technol., 1986, vol. 2, pp. 133–39.

    CAS  Google Scholar 

  5. E. Doege: Einfluss des Faserverlaufes auf die Schwingfestigkeit und die mechanischen Eigenschaften eines unlegierten Vergütungsstahls in Abhängigkeit vom Schwefelgehalt, Umformgrad und von der Umformtemperatur. IFUM Do 190/49, Hannover, Germany, 1987.

  6. M. Wahlster, H. Heimbach, and K. Forch: Stahl und Eisen, 1969, vol. 89, pp. 1037–44.

    CAS  Google Scholar 

  7. Haglund, S.: Jernkontoret, Verein Deutscher Eisenhüttenleute, Düsseldorf, Germany, 2004, pp. 4:4–23.

    Google Scholar 

  8. T.J. Baker, K.B. Gove, and J.A. Charles: Met. Technol., 1976, vol. 3, pp. 183–93.

    Google Scholar 

  9. R. Kiessling and N. Lange: Non-metallic Inclusions in Steel (Parts—IV), 2nd ed., The Metals Society, London, 1978, pp. 114–27.

    Google Scholar 

  10. F. Matsuno, S.I. Nishikida, and H. Ikesaki: Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 989–98.

    CAS  Google Scholar 

  11. A. El-Ghazaly: Neue Hutte (Germany), 1992, vol. 37, pp. 399–404.

    CAS  Google Scholar 

  12. W.B. Morrison: Metals Technology, 1975, pp. 33–41.

  13. A.D. Wilson: “Characterization of Inclusions in Plate Steels and Their Influence on Mechanical Properties. Inclusions and their Influence on Material Behavior,” ASM International, Chicago, 1989.

    Google Scholar 

  14. D. Brooksbank and K.W. Andrews: J. Iron Steel Inst., 1969, vol. 207, pp. 474–83.

    Google Scholar 

  15. D. Brooksbank and K.W. Andrews: J. Iron Steel Inst., 1972, vol. 210, pp. 246–55.

    CAS  Google Scholar 

  16. G. Härkegård: Eng. Fracture Mech., 1974, vol. 6, pp. 795–803.

    Article  Google Scholar 

  17. ASTM-International: Designation: E 399 - 90, Metals Test Methods and Analytical Procedures, in Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2001, pp. 434–37.

    Google Scholar 

  18. ASTM-International: Designation: E 1245 - 03, Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, in Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003, pp. 1–8.

    Google Scholar 

  19. G.F. Vander Voort: in Bearing Steels: into 21st Century, ASTM STP 1327, J. Joseph J.C. Hoo, and Willard B. Green, eds., ASTM, West Conshohocken, PA, 1998, pp. 13–26.

    Google Scholar 

  20. S.B. Hosseini: Bonding Between MnS Inclusions and the Steel Matrix, Chalmers Univ. Tech., Göteborg, Sweden, 2005.

    Google Scholar 

  21. W.J. Dixon and A.M. Mood: J. Am. Stat. Assoc., 1948, vol. 43, pp. 108–26.

    Article  Google Scholar 

  22. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier, Amsterdam, 2002, p. 369.

    Google Scholar 

  23. DIN-50602-1985, Beuth Verlag GmbH, ed., Berlin, Germany, 1985, pp. 1–9.

  24. F. Sandberg: Examination of tooth fractures on countershafts (2nd gear) due to fatigue initiated from micro- and macro inclusions, with or without overheating of dedendum flanks, P/N 1521411 & 1521930. ER-505825 (Volvo Internal Report). Volvo Powertrain, Göteborg, Sweden, 2003.

    Google Scholar 

  25. M. Nordqvist: Steel Cleanliness: Evaluation of Immersion Ultrasonic Testing and Examination of Detected Inclusions. 2003.

  26. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, 2004, p. 679.

  27. ASM-International: ASM Handbook, 1st ed., ASM International, 1996.

  28. N.E. Dowling: Mechanical Behavior of Materials, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999.

    Google Scholar 

  29. A.D. Wilson: Fractographic Characterization of the Effect of Inclusions on Fatigue Crack Propagation. Fractography and Materials Science, Williamsburg, VA, 1981, pp. 166–86.

  30. J. Höijer: Anisotropic Fatigue Properties of Engineering Steel: A Microstructural Characterisation. Chalmers Reproservice, Göteborg, Sweden, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temmel, C., Ingesten, NG. & Karlsson, B. Fatigue anisotropy in cross-rolled, hardened medium carbon steel resulting from MnS inclusions. Metall Mater Trans A 37, 2995–3007 (2006). https://doi.org/10.1007/s11661-006-0181-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0181-0

Keywords

Navigation