Skip to main content
Log in

The influence of a martensitic phase transformation on stress development in thermal barrier coating systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal barrier coatings (TBCs) provide thermal insulation and oxidation protection of Ni-base superalloys in elevated temperature turbine applications. Thermal barrier coating failure is caused by spallation, which is related to the development of internal stresses during thermal cycling. Recent microstructural observations have highlighted the occurrence of a martensitic bond coat transformation, and this finite-element analysis was conducted to clarify the influence of the martensite on the development of stresses and strains in the multilayered system during thermal cycling. Simulations incorporating the volume change associated with the transformation and experimentally measured coating properties indicate that out-of-plane top coat stresses are greatly influenced by the presence of the martensitic transformation, the temperature at which it occurs relative to the strength of the bond coat and attendant bond coat plasticity. Intermediate values of bond coat strength and transformation temperatures are shown to result in the highest top coat stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Miller: NASA Conference Publication 3312, NASA, Arlington, VA, 1995, pp. 17–34.

    Google Scholar 

  2. R.K. Wright and A.G. Evans: Curr. Opin. Solid State Mater. Sci., 1999, vol. 4, pp. 255–65.

    Article  CAS  Google Scholar 

  3. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and E.S. Pettit: Progr. Mater. Sci., 2001, vol. 46, pp. 505–53.

    Article  Google Scholar 

  4. V. Tolpygo and D.R. Clarke: Mater. Sci. Eng., 2000, vol. A278, pp. 142–50.

    CAS  Google Scholar 

  5. V. Tolpygo and D.R. Clarke: Mater. Sci. Eng., 2000, vol. A278, pp. 151–61.

    CAS  Google Scholar 

  6. M. Gell, K. Vaidyanathanm, B. Barber, J. Cheng, and E. Jordan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 427–35.

    CAS  Google Scholar 

  7. M.Y. He, A.G. Evans, J.W. Hutchinson, Acta Mater., 2000, vol. 48, pp. 2593–2601.

    Article  CAS  Google Scholar 

  8. M.Y. He, J.W. Hutchinson, and A.G. Evans, Acta Mater., 2002, vol. 50, pp. 1063–73.

    Article  CAS  Google Scholar 

  9. A.M. Karlsson and A.G. Evans: Acta Mater., 2001, vol. 49, pp. 1793–1804.

    Article  CAS  Google Scholar 

  10. A.M. Karlsson, C.G. Levi, A.G. Evans: Acta Mater., 2002, vol. 50, pp. 1263–73.

    Article  CAS  Google Scholar 

  11. V. Tolpygo and D.R. Clarke: Acta Mater., 2000, vol. 48, pp. 3283–93.

    Article  CAS  Google Scholar 

  12. M.W. Chen, R.T. Ott, T.C. Hufnagel, P.K. Wright, and K.J. Hemker: Surface Coating Technol., 2003, vols. 163–164, pp. 25–30.

    Article  Google Scholar 

  13. M.W. Chen, K.J.T. Livi, P.K. Wright, and K.J. Hemker: Mater. Metall. Trans. A, 2003, vol. 34A, pp. 2289–99.

    CAS  Google Scholar 

  14. M.F. Singleton, J.L. Murray, and P. Nash: in Binary Alloy Phase Diagrams, Massalski, T.B. ed., ASM, Metals Park, OH, 1986, pp. 140–43.

    Google Scholar 

  15. S. Rosen and J.A. Goebel: Trans. TMS-AIME, 1968, 242, pp. 722–24.

    CAS  Google Scholar 

  16. J.L. Smialek and R.F. Hehemann Metall. Trans., 1973, vol. 4, pp. 1571–75.

    CAS  Google Scholar 

  17. Y.K. Au and C.M. Wayman: Scripta Metall., 1972, vol. 6, pp. 1209–14.

    Article  CAS  Google Scholar 

  18. K. Enami and S. Nenno: Metall. Trans., 1971, vol. 2, p. 1487.

    CAS  Google Scholar 

  19. M.W. Chen, M.L. Glynn, R.T. Ott, T.C. Hufnagel and K.J. Hemker: Acta Mater., 2003, vol. 51, pp. 4279–94.

    Article  CAS  Google Scholar 

  20. D. Pan, M.W. Chen, P.K. Wright and K.J. Hemker: Acta Mater., 2003, vol. 51, pp. 2205–17.

    Article  CAS  Google Scholar 

  21. C.A. Johnson, J.A. Ruud, R. Bruce, and D. Wortman: Surface Coatings Technol., 1998, vol. 109, pp. 80–85.

    Article  Google Scholar 

  22. J.F. Shackelford and W. Alexander CRC Materials Science and Engineering Handbook, 3rd ed., CRC Press, New York, NY, 2001.

    Google Scholar 

  23. J. Cheng, E.H. Jordan, B. Barber, and M. Gell: Acta Mater., 1998, vol. 46, pp. 5839–50.

    Article  CAS  Google Scholar 

  24. Committee on Coatings for High-Temperature Structural Materials: Coatings for High-Temperature Structural Materials Trends and Opportunities, National Academy Press, Washington, DC, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation in the symposium “Terence E. Mitchell Symposium on the Magic of Materials: Structures and Properties” from the TMS Annual Meeting in San Diego, CA in March 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glynn, M.L., Chen, M.W., Ramesh, K.T. et al. The influence of a martensitic phase transformation on stress development in thermal barrier coating systems. Metall Mater Trans A 35, 2279–2286 (2004). https://doi.org/10.1007/s11661-006-0207-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0207-7

Keywords

Navigation