Skip to main content
Log in

Time-resolved in-situ analysis of phase evolution for the directional solidification of carbon steel weld metal

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Kinetic information about the phase transformation, during solidification process and solid-state transformation is essential to the material processing, such as welding. In our research group, in-situ phase identification system consisting of undulator beam and imaging plate have recently been used. The welding torch is driven by stepping-motor in the system. Those make possible that phase transformation can be identified in real-time under the condition of directional solidification and the spatial resolution of 100 × 500 µm. The time-resolution is 0.3125 seconds. In the present work, combination of analyzing method: the in-situ phase identification system, morphological observation by high-temperature laser scanning confocal microscopy and observation of microstructure at room temperature by OM, SEM and micro diffraction-system, is suggested to analyze the phase transformation during welding process. Phase transformation process of hypereutectoid carbon steel, during welding was analyzed as an example of combination observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kou and Y. Le: Metall. Trans. A, 1982, vol. 13A, pp. 1141–52.

    Google Scholar 

  2. F. Matsuda, H. Nakagawa, and J.B. Lee: Trans. JWRI, 1987, vol. 16 (2), pp. 115–21.

    CAS  Google Scholar 

  3. H. Inoue, T. Koseki, S. Ohkita, and M. Fuji: Q. J. Jpn. Welding Soc., 1997, vol. 15 (1), pp. 77–87.

    CAS  Google Scholar 

  4. H. Inoue, T. Koseki, S. Ohkita, and M. Fuji: Q. J. Jpn. Welding Soc., 1977, vol. 15 (1), pp. 88–99.

    Google Scholar 

  5. J.W. Elmer, J. Wong, and M. Froba, P.A. Waide, and E.M. Larson: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 775–83.

    Article  CAS  Google Scholar 

  6. J.W. Elmer, J. Wong, and T. Ressler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1175–87.

    Article  CAS  Google Scholar 

  7. T.A. Palmer, J.W. Elmer, and J. Wong: Sci. Technol. Welding Joining, 2002, vol. 7 (3), pp. 159–71.

    Article  CAS  Google Scholar 

  8. J.W. Elmer, J. Wong, and T. Ressler: Scripta Mater., 2000, vol. 43, pp. 751–57.

    Article  CAS  Google Scholar 

  9. S.S. Babu, J.W. Elmer, J.M. Vitek, and S.A. David: Acta Mater., 2002, vol. 50, pp. 4763–81.

    Article  CAS  Google Scholar 

  10. M. Yonemura, T. Osuki, S. Inoue, K. Miyabe, Y. Komizo, H. Terasaki, M. Sato, and A. Kitano: SPring-8 User Experiment Report 2004A, Hyogo, Japan, 2004, p. 244.

  11. H. Kitamura, S. Tamamushi, T. Yamakawa, S. Sato, Y. Miyahara, G. Isoyama, H. Nishimura, A. Mikuni, S. Asaoka, S. Mitani, H. Maezawa, Y. Suzuki, H. Kanamori, and T. Sasaki: Jpn. J. Appl. Phys., 1982, vol. 21 (12), pp. 1728–31.

    Article  Google Scholar 

  12. H. Yin, T. Emi, and H. Shibata: Iron Steel Inst. Jpn. Int., 1998, vol. 38 (8), pp. 794–801.

    CAS  Google Scholar 

  13. H. Chikama, H. Shibata, T. Emi, and M. Suzuki: Mater. Trans., JIM, 1996, vol. 37 (4), pp. 620–26.

    CAS  Google Scholar 

  14. H. Yin, T. Emi, and H. Shibata: Acta Mater., 1999, vol. 47 (5), pp. 1523–35.

    Article  CAS  Google Scholar 

  15. R.J. Dippenaar and D.J. Phelan: Metall. Trans. B, 2003, vol. 34B, pp. 495–501.

    CAS  Google Scholar 

  16. Metallography and Microstructures (ASM Handbook), vol. 9, G.F. Vander Voort, ed., ASM International, Materials Park, OH, 2004, p. 64.

    Google Scholar 

  17. A.R. Marder and J.I. Goldstein E, eds., Phase Transformations in Ferrous Alloys, TMS-AIME, Warrendale, PA, 1984, pp. 201–36.

    Google Scholar 

  18. L.E. Samuels: Light Microscopy of Carbon Steels, ASM INTERNATIONAL, Materials Park, OH, 1999, p. 269.

    Google Scholar 

  19. G. Seyffarth: Schweiβ-ZTU-Schaubilder, VEB Verlag Technik, Berlin, 1982, p. 174.

    Google Scholar 

  20. T. Kasugai and M. Fujita: Atlas of CCT Diagrams for Welding (1), NRIM Special Report No. 99-02, National Research Institute for Metals, 1-2-1, Sengen, Tsukuba-shi, Ibaraki, Japan, 1999, p. 12.

  21. C. Bronnimann, R. Baur, E.F. Eikenberry, P. Fischer, S. Florin, R. Horisberger, M. Lindner, B. Schmitt, and C. Schulze: Nucl. Instrum. Meth., 2002, vol. A477, pp. 531–35.

    Google Scholar 

  22. 22.E.F. Eikenberry, C. Bronnimann, G. Hulsen, H. Toyokawa, R. Horisberger, B. Schmitt, C. Schulze, and T. Tomizaki: Nucl. Instrum. Meth., 2003, vol. A501, pp. 260–66.

    Google Scholar 

  23. B.D. Culity: Elements of X-Ray Diffraction, Addison-Wesley Pub., Reading, MA, 1978, pp. 126–27.

    Google Scholar 

  24. R. Trivedi, S.A. David, M.A. Eshelman, J.M. Vitek, S.S. Babu, T. Hong, and T. DebRoy: J. Appl. Phys., 2003, vol. 93 (8), pp. 4885–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terasaki, H., Komizo, Y., Yonemuira, M. et al. Time-resolved in-situ analysis of phase evolution for the directional solidification of carbon steel weld metal. Metall Mater Trans A 37, 1261–1266 (2006). https://doi.org/10.1007/s11661-006-1077-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1077-8

Keywords

Navigation