Skip to main content

Advertisement

Log in

The Effect of Anvil Geometry and Welding Energy on Microstructures in Ultrasonic Spot Welds of AA6111-T4

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The formation of ultrasonic spot welds of AA6111-T4 has been investigated using a single-transducer unidirectional wedge-reed welder. The evolution of weld microstructures and weld strength due to anvil cap geometry and welding energy was studied. The variations in lap-shear failure load and weld microstructures as a function of welding energy were only slightly influenced by the changes in the anvil cap geometry. Weld failure in lap-shear tensile tests occurs by interface fracture for low energy welds and by button formation for high energy welds. Initially, microwelds or weld islands several microns in diameter are generated presumably at asperities of the two pieces being joined. As the welding energy increases, the weld interface can change from a planar to a wavy morphology and the weld strength increases. Deformation wakes and bifurcation are ubiquitous in strong welds. Microporosity is observed at the periphery of growing weld islands and along the flow lines associated with the wavy deformation microstructures. Grain growth occurs inside the weld zone after isothermal annealing. However, the porous microstructure at the weld interface is not affected by isothermal annealing. Ultrasonic spot welding of AA6111-T4 aluminum was found to be insensitive to variations in anvil cap size and the knurl patterns investigated in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. E. Lara-Curzio, L. Riester, and R. Jahn: Oak Ridge National Laboratory, Oak Ridge, TN, unpublished research, 2001

  2. J.E. Krzanowski: IEEE Trans. Compon., Hybrids Manufact. Technol., 1990, vol. 13 (1), pp. 176–81

    Article  Google Scholar 

  3. N. Murdeshwar, J.E. Krzanowski: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2663–71

    Article  CAS  Google Scholar 

  4. Y.R. Jeng, J.H. Horng: J. Tribol., 2001, vol. 123 (4), pp. 725–31

    Article  Google Scholar 

  5. Y. Gao, C. Doumanidis: ASME J. Manufacturing Sci. Eng., 2002, vol. 124 (2), pp. 426–34

    Article  Google Scholar 

  6. E.A. Neppiras: Ultrasonics, 1965, pp. 128–35

  7. H.P.C. Daniels: Ultrasonics, 1965, pp. 190–96

  8. J.H. Horng: ASME J. Tribol., 1998, vol. 121 pp. 82–89

    Google Scholar 

  9. M.A. Zlatom, A.A. Kozhushko: Sov. Phys.-Techn. Phys., 1982, vol. 27 (2), pp. 212–14

    Google Scholar 

  10. J.D. Colvin, M. Legrand, B.A. Remington, G. Schurtz, S.V. Weber: J. Appl. Phys., 2003, vol. 93 (9), pp. 5287–5301

    Article  CAS  Google Scholar 

  11. Q. Han, C.L. Xu, G.R. Romanoski, D.T. Hoelzer, M.M. Menon, and R.P. Taleyarkhan: 2003 LDRD Seed Funding Project Report No. 3210–2038, Oak Ridge National Laboratory, Oak Ridge, TN, 2003

  12. M.R. Arnison, K.G. Larkin, C.J.R. Sheppard, N.I. Smith, C.J. Cogswell: J. Microsc., 2004, vol. 214 (1), pp. 7–12

    Article  CAS  Google Scholar 

  13. J.B. Jones and J.J. Powers: Weld. J., 1956, pp. 761–66

  14. S.T.J. Yu and R. Jahn: TMS Proc. Modeling the Performance of Engineering Structural Materials III, TMS, Warrendale, PA, 2002, pp. 385–91

  15. A. Brodyanski, C. Born, M. Kopnarski: Appl. Surf. Sci., 2005, vol. 252 pp. 94–97

    Article  CAS  Google Scholar 

  16. J. Woltersdorf, E. Pippel, E. Roeder, G. Wagner, J. Wagner: Physica Status Solidi A, 1995, vol. 150 (1), pp. 307–17

    Article  Google Scholar 

  17. T. Watanabe, A. Yanagisawa, S. Sunaga: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1107–11

    Article  CAS  Google Scholar 

  18. J.E. Krzanowski, N. Murdeshwar: J. Electron. Mater., 1990, vol. 19 (9), pp. 919–28

    Google Scholar 

  19. E.A. Kenik, R. Jahn: Microsc. Microanal., 2003, vol. 9 pp. 720–21

    Google Scholar 

  20. S.M. Allameh, C. Mercer, D. Popoola, W.O. Soboyejo: J. Eng. Mater. Technol., 2005, vol. 127 (1), pp. 65–74

    Article  CAS  Google Scholar 

  21. A.A. Bahrani, T.J. Black, B. Crossland: Proc. R. Soc. Ser. A, 1966, vol. 296 (1445) pp. 123–36

    Google Scholar 

  22. J.N. Hunt: Phil. Mag. (Ser. 8), 1968, vol. 17 (148), pp. 669–80

    Google Scholar 

  23. G.R. Cowan, O.R. Bergmann, A.H. Holtzman: Metall. Trans., 1971, vol. 2, pp. 3145–55

    CAS  Google Scholar 

  24. J.L. Robinson: Phil. Mag., 1975, vol. 31 (3), pp. 587–97

    CAS  Google Scholar 

  25. J.L. Robinson: J. Appl. Phys., 1977, vol. 48 (6), pp. 2202–07

    Article  CAS  Google Scholar 

  26. S.V. Bazdenkov, V.F. Demichev, D.K. Morozov, O.P. Pogutse: Combust. Explos. Shock Waves, 1985, vol. 21 (1), pp. 124–30

    Article  Google Scholar 

  27. V.M. Kornev, I.V. Yakovlev: Combust. Explos. Shock Waves, 1984, vol. 20 (2), pp. 204–07

    Article  Google Scholar 

  28. V.M. Kornev and I.V. Yakovlev: Metall. Appl. Shock-Wave and High-Strain-Rate Phenomena, 1986, pp. 961–67

  29. D. Jaramillo, V.A. Szecket, O.T. Inal: Mater. Sci. Eng., 1987, vol. 91 (7), pp. 217–22

    Google Scholar 

  30. A. Chiba, M. Nishida, Y. Morizono: Mater. Sci. Forum, 2004, vols. 465–466, pp. 465–74

    Article  Google Scholar 

  31. C.H. Oxford, P.E.J. Flewitt: Metall. Trans. A, 1977, vol. 8 (5), pp. 741–50.

    Google Scholar 

  32. S.K. Salwan: India Weld. Res. Inst., 1987, vol. 8 (3), pp. 49–52

    Google Scholar 

  33. F. Grignon, D. Benson, K.S. Vecchio, M.A. Meyers: Int. J. Impact Eng., 2004, vol. 30 (10), pp. 1333–51

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. L. Reatherford for the effort in custom designed anvil post and Drs. S. Ward, W. Donlon, and J.E. Allison for in-depth discussion of the manuscript. This research is supported, in part, by NIST ATP Cooperative Agreement No. 70NANB3H3015 of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jahn.

Additional information

Manuscript submitted May 19, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahn, R., Cooper, R. & Wilkosz, D. The Effect of Anvil Geometry and Welding Energy on Microstructures in Ultrasonic Spot Welds of AA6111-T4. Metall Mater Trans A 38, 570–583 (2007). https://doi.org/10.1007/s11661-006-9087-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9087-0

Keywords

Navigation