Skip to main content
Log in

Deformation Substructures and Their Transitions in Laser Shock–Compressed Copper-Aluminum Alloys

  • Symposium: Dynamic Behavior of Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is shown that the short pulse durations (0.1 to 10 ns) in laser shock compression ensure a rapid decay of the pulse and quenching of the shocked sample in times that are orders of magnitude lower than in conventional explosively driven plate impact experiments. Thus, laser compression, by virtue of a much more rapid cooling, enables the retention of a deformation structure closer to the one existing during shock. The smaller pulse length also decreases the propensity for localization. Copper and copper aluminum (2 and 6 wt pct Al) with orientations [001] and \( [\ifmmode\expandafter\bar\else\expandafter\=\fi{1}34] \) were subjected to high intensity laser pulses with energy levels of 70 to 300 J delivered in an initial pulse duration of approximately 3 ns. The [001] and \( [\ifmmode\expandafter\bar\else\expandafter\=\fi{1}34] \) orientations were chosen, because they respectively maximize and minimize the number of slip systems with highest resolved shear stresses. Systematic differences of the defect substructure were observed as a function of pressure, stacking-fault energy, and crystalline orientation. The changes in the mechanical properties for each condition were compared using micro- and nanohardness measurements and correlated well with observations of the defect substructure. Three regimes of plastic deformation were identified and their transitions modeled: dislocation cells, stacking faults, and twins. An existing constitutive description of the slip to twinning transition, based on the critical shear stress, was expanded to incorporate the effect of stacking-fault energy. A new physically based criterion accounting for stacking-fault energy was developed that describes the transition from perfect loop to partial loop homogeneous nucleation, and consequently from cells to stacking faults. These calculations predict transitions that are in qualitative agreement with the effect of SFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. S.C. Smith: Trans. AIME, 1958, vol. 212, pp. 574–78

    CAS  Google Scholar 

  2. B.Y. Cao, D.H. Lassila, M.S. Schneider, B.K. Kad, C.X. Huang, Y.B. Xu, D.H. Kalantar, B.A. Remington, M.A. Meyers: Mater. Sci. Eng. A, 2005, vol. 409, pp. 270–81

    Article  Google Scholar 

  3. M.S. Schneider, B.K. Kad, D.H. Kalantar, B.A. Remington, M.A. Meyers: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2633–46

    Article  CAS  Google Scholar 

  4. M.S. Schneider, B.K. Kad, D.H. Kalantar, B.A. Remington, E. Kenik, H. Jarmakani, M.A. Meyers: IJIE, 2005, vol. 32, pp. 473–507

    Google Scholar 

  5. J.M. McNaney, M.J. Edwards, R. Becker, K.T. Lorenz, B.A. Remington: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2625–31

    Article  CAS  Google Scholar 

  6. G.A. Askaryon, E.M. Morez: JETP Lett., 1963, vol. 16, p. 1638

    Google Scholar 

  7. R.M. White: J. Appl. Phys., 1963, vol. 34, pp. 2123–24

    Article  Google Scholar 

  8. C.E. Bell, J.A. Landt: Appl. Phys. Lett., 1967, vol. 10, pp. 46–48

    Article  CAS  Google Scholar 

  9. E. Panarella, P. Savic: Can. J. Phys., 1968, vol. 46, pp. 182–92

    Google Scholar 

  10. C.H. Skeen, C.M. York: J. Appl. Lett., 1968, vol. 12, pp. 369–71

    Article  Google Scholar 

  11. O. Johari, G. Thomas: Appl. Phys. Lett., 1964, vol. 12, pp. 1153–59

    CAS  Google Scholar 

  12. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975, p. 142

    Google Scholar 

  13. A. Rohatgi, K.S. Vecchio: Mater. Sci. Eng. A, 2002, vol. A328, pp. 256–66

    CAS  Google Scholar 

  14. A. Rohatgi, K.S. Vecchio, G.T. Gray III: Acta Mater., 2001, vol. 49, pp. 427–38

    Article  CAS  Google Scholar 

  15. A. Rohatgi, K.S. Vecchio, G.T. Gray III: Metall. Mater. Trans. A, 2001, vol. 135A, pp. 135–45

    Article  Google Scholar 

  16. G.B. Zimmerman, W.L. Kruer: Comm. Plasma Phys. Controlled Fus., 1975, vol. 2, p. 51

    CAS  Google Scholar 

  17. A.M. Rubenchik, M.D. Feit, M.D. Perry, J.T. Larsen: Appl. Surf. Sci., 1998, vol. 129, pp. 193–98

    Article  Google Scholar 

  18. D.J. Steinberg, S.G. Cochran, M.W. Guinan: J. Appl. Phys., 1980, vol. 51, pp. 1498–504

    Article  CAS  Google Scholar 

  19. M.A. Meyers, F. Gregori, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, J.S. Wark: Acta Metall., 2003, vol. 51, pp. 1211–28

    CAS  Google Scholar 

  20. L.E. Murr: in Shock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers, L.E. Murr, eds., Plenum, New York, NY, 1981, pp. 607–73

    Google Scholar 

  21. B.L. Holian, P.S. Lomdahl: Science, 1998, vol. 280, pp. 2085–88

    Article  CAS  Google Scholar 

  22. E.M. Bringa, A. Caro, Y. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, H.V. Swygenhoven: Science, 2005, vol. 309, pp. 1838–41

    Article  CAS  Google Scholar 

  23. L.E. Murr: Scripta Metall., 1978, vol. 12, pp. 201–06

    Article  CAS  Google Scholar 

  24. A. Rohatgi: Master’s Thesis, University of California, San Diego, 1999

  25. P.C.J. Gallagher: Metall. Trans., 1970, vol. 1, p. 2429

    CAS  Google Scholar 

  26. O. Vöhringer: Z. Metallkd., 1974, vol. 56, p. 585

    Google Scholar 

  27. J.A. Venables: in Deformation Twinning, R.E. Reed-Hill, J.P. Hirth, H.C. Rogers, eds., Gordon and Breach, New York, NY, 1964, p. 77

    Google Scholar 

  28. O. Vöhringer: Z. Metallkd., 1972, vol. 11, p. 1119

    Google Scholar 

  29. N. Narita, J.-I. Takamura: in Dislocations in Solids, F.R.N. Nabarro, ed., Elsevier, Amsterdam, 1992, vol. 9, p. 1211–12

    Google Scholar 

  30. G. Thomas: Acta Metall., 1965, vol. 13, p. 1211

    Article  Google Scholar 

  31. L.E. Murr, M.A. Meyers, C.-S. Niou, Y.-J. Chen, S. Pappu, C. Kennedy: Acta Mater., 1997, vol. 45, pp. 157–75

    Article  CAS  Google Scholar 

  32. M.A. Meyers, O. Voehringer, V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39

    Article  CAS  Google Scholar 

  33. J.W. Swegle, D.E. Grady: J. Appl. Phys., 1985, vol. 58, pp. 692–701

    Article  CAS  Google Scholar 

  34. F.J. Zerilli, R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, pp. 1816–25

    Article  CAS  Google Scholar 

  35. J. Diehl: Z. Metallkd., 1956, vol. 47, pp. 331–41

    CAS  Google Scholar 

  36. M.A. Meyers: Dynamic Behavior of Materials, J. Wiley, New York, NY, 1994

    Google Scholar 

  37. O. Vöhringer: Z. Metallkd., 1976, vol. 67, p. 51

    Google Scholar 

  38. T. Kan, P. Haasen: Mater. Sci. Eng., 1969–70, vol. 5, p. 237

    Google Scholar 

  39. R. Labusch: Phys. Status Solidi, 1970, vol. 41, p. 659

    Article  Google Scholar 

  40. P. Jax, P. Kratochvil, P. Haasen: Acta Metall., 1970, vol. 18, pp. 237–45

    Article  CAS  Google Scholar 

  41. A. Rohatgi: Ph.D. Thesis, University of California, San Diego, 1999

  42. A. Cottrell: Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, United Kingdom, 1953, p. 54

    Google Scholar 

  43. G. Xu, A.S. Argon: Phil. Mag., 2000, vol. 80. pp. 605–11

    Article  CAS  Google Scholar 

  44. J.R. Rice: J. Mech. Phys. Sol., 1992, vol. 40, p. 256

    Article  Google Scholar 

  45. M. Khantha, V. Vitek: Acta Mater., 1997, vol. 45, pp. 4675–86

    Article  CAS  Google Scholar 

  46. M.A. Meyers: Scripta Mater., 1978, vol. 12, pp. 21–26

    Article  CAS  Google Scholar 

  47. D. Hull, D.J. Bacon: Introduction to Dislocations, Butterworth-Heinemann, Oxford, United Kingdom, 2001, p. 147

    Google Scholar 

  48. D.L. Preston, D.C. Wallace: Solid State Commun., 1992, vol. 81 (3), pp. 277–81

    Article  CAS  Google Scholar 

  49. T.C. Germann, B.L. Holian, P.S. Lomdahl, and R. Ravelo: Phys. Rev. Lett., 2000, vol. 84, pp. 5351–54

    Article  CAS  Google Scholar 

  50. T.C. Germann, D. Tanguy, B.H. Holian, P.S. Lomdahl, M. Mareschal, R. Ravelo: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2609–15

    Article  CAS  Google Scholar 

  51. D. Tanguy, M. Mareschal, P.S. Lomdahl, T.C. Germann, B.L. Holian, R. Ravelo: Phys. Rev. B, 2003, vol. 68, p. 144111

    Article  Google Scholar 

  52. K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, D. Kadau, P. Ental, M. Kreth, F. Westerhof, D.E. Wolf: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2719–23

    Article  CAS  Google Scholar 

  53. R.J. De Angelis, J.B. Cohen: J. Met., 1963, vol. 15, p. 681

    Google Scholar 

Download references

Acknowledgment

This research was supported by the Department of Energy through Grant Nos. DEFG0398DP00212 and DEFG0300SF2202. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory, through the Institute of Laser Science and Applications, under contract No. W-7405-Eng-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Meyers.

Additional information

This article is based on a presentation made in the symposium entitled “Dynamic Behavior of Materials,” which occurred during the TMS Annual Meeting and Exhibition, February 25–March 1, 2007 in Orlando, Florida, under the auspices of The Minerals, Metals and Materials Society, TMS Structural Materials Division, and TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M., Schneider, M., Jarmakani, H. et al. Deformation Substructures and Their Transitions in Laser Shock–Compressed Copper-Aluminum Alloys. Metall Mater Trans A 39, 304–321 (2008). https://doi.org/10.1007/s11661-007-9359-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9359-3

Keywords

Navigation