Skip to main content

Advertisement

Log in

Mechanical Behavior of Cryomilled CP-Ti Consolidated via Quasi-Isostatic Forging

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Commercially pure (CP) Ti (Grade 2 with chemical composition 0.190 wt pct O, 0.0165 wt pct N, 0.0030 wt pct C, and 0.013 wt pct Fe) was cryomilled in liquid argon and liquid nitrogen for 8 hours. The influence of the milling environment on the chemistry, grain size, and grain-boundary structure of CP-Ti was studied by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and chemical analysis. The results show that the final average grain size obtained after 8 hours of cryomilling was ∼20 nm, for both liquid nitrogen and liquid argon cryomilling environments. Grains were observed to be heavily deformed and they did not reveal well-defined boundaries between them. Liquid nitrogen and liquid argon cryomilling environments led to differences in the final powder chemistry. Cryomilling in liquid nitrogen resulted in Ti powders with ∼2 wt pct nitrogen, which caused embrittlement that in turn affected the mechanical behavior of the consolidated materials. Cryomilling in liquid argon resulted in powders with slightly higher oxygen levels than those from liquid nitrogen experiments; this was attributed to the use of stearic acid (CH3(CH2)16COOH) as a process control agent (PCA). The cryomilled powders, in the form of various compositional blends from the argon and nitrogen milling experiments, were subsequently consolidated via quasi-isostatic (QI) forging, for mechanical behavior studies. The mechanical testing results showed that the QI-forged 85 pct as-received +15 pct liquid-argon-cryomilled powder blend exhibited ∼30 pct elongation to fracture, with a yield strength (YS) of 601 MPa and an ultimate tensile strength (UTS) of 711 MPa. In the case of 100 pct liquid-argon-cryomilled and QI-forged material, the YS, UTS, and elongation values were 947 and 995 MPa and 4.32 pct, respectively. The mechanical behavior was discussed in terms of the operative microstructure mechanisms. The enhanced ductility noted in the blended powders was discussed in terms of the presence of a bimodal microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Ceracon forging is a trademark of Ceracon Inc., Carmichael, CA.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. G. Lutjering, J.C. Williams: Titanium, Springer, Berlin, 2003

    Google Scholar 

  2. V.N. Moiseyev: Titanium Alloys—Russian Aircraft and Aerospace Applications, Taylor & Francis, Boca Raton, FL, 2006

    Google Scholar 

  3. M.J. Donachie: Titanium: A Technical Guide, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 2000

    Google Scholar 

  4. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29

    Article  CAS  Google Scholar 

  5. K.S. Kumar, H. Van Swygenhoven, S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743–74

    Article  CAS  Google Scholar 

  6. J.R. Weertman: in Nanostructured Materials: Processing, Properties, and Applications, C.C. Koch, ed., William Andrews Publishing, New York, NY, 2002, pp. 537–61

    Google Scholar 

  7. Y.G. Ko, D.H. Shin, C.S. Lee: in Ultrafine Grained Materials IV—TMS 2006, Y.T Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe, eds., TMS, Warrendale, PA, 2006, pp. 413–18

    Google Scholar 

  8. V.V. Latysh, G.H. Salimgareeva, I.P. Semova, I.V. Kandarov, Y.T. Zhu, T.C. Lowe, R.Z. Valiev: in Ultrafine Grained Materials IV—TMS 2006, Y.T Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe, eds., TMS, Warrendale, PA, 2006, pp. 277–82

    Google Scholar 

  9. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev: Mater. Sci. Eng., A, 2001, vol. 299, pp. 59–67

    Article  Google Scholar 

  10. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee: Scripta Mater., 2001, vol. 45, pp. 747–52

    Article  CAS  Google Scholar 

  11. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89

    Article  CAS  Google Scholar 

  12. C. Suryanarayana: Prog. Mater. Sci., 2001. vol. 46, pp. 1–184

    Article  CAS  Google Scholar 

  13. D.B. Witkin, E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1–60

    Article  CAS  Google Scholar 

  14. F.S. Sun, P. Rojas, A. Zúñiga, and E.J. Lavernia: in Trends in Materials and Manufacturing Technology and Powder Metallurgy R&D in the Transportation Industry: 6th MPMD Global Innovations Symposium, T.R. Bieler, J.W. Sears, J.E. Carsley, H.L. Fraser, and J.E. Smugeresky, eds., TMS, Warrendale, PA, 2005, pp. 303–10

  15. J. He, E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 2724–32

    Article  ADS  CAS  Google Scholar 

  16. F. Zhou, S.R. Nutt, C.C. Bampton, E.J. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1985–92

    Article  CAS  ADS  Google Scholar 

  17. Y. Xun, E.J. Lavernia, F.A. Mohamed: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 573–81

    Article  ADS  CAS  Google Scholar 

  18. A.P. Newbery, S.R. Nutt, E.J. Lavernia: JOM, 2006, vol. 58 pp. 56–61

    Article  CAS  Google Scholar 

  19. A.P. Newbery, B. Ahn, P. Pao, S.R. Nutt, E.J. Lavernia: Adv. Mater. Res., 2007, vols. 29–30, pp. 21–29

    Google Scholar 

  20. W. Chan: Mater. Des., 1988, vol. 9, pp. 355–57

    CAS  Google Scholar 

  21. B.L. Ferguson, O.D. Smith: Metals Handbook, 9th ed. vol. 7, ASM INTERNATIONAL, Metals Park, OH, 1984, pp. 537–41

    Google Scholar 

  22. L.F. Pease, W.G. West: Fundamentals of Powder Metallurgy, Metal Powder Industries Federation, Princeton NJ, 2002, pp. 294–95

    Google Scholar 

  23. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels: J. Appl. Crystallogr., 1982, vol. 15, pp. 308–14

    Article  Google Scholar 

  24. T.M. Flynn: Cryogenic Engineering, Marcel Decker, New York, NY, 2005

    Google Scholar 

  25. V.L. Tellkamp, A. Melmed, E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335–43

    Article  CAS  Google Scholar 

  26. J. Eckert, J.C. Holzer, C.E. Krill III, W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61

    Article  ADS  CAS  Google Scholar 

  27. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19

    Article  CAS  Google Scholar 

  28. T.G. Nieh, J. Wadsworth: Scripta Mater., 1991, vol. 25, pp. 955–58

    Article  CAS  Google Scholar 

  29. F. Sun, A. Zuniga, P. Rojas, E.J. Lavernia: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2069–78

    Article  CAS  ADS  Google Scholar 

  30. D. David, E.A. Garcia, G. Beranger: in Titanium’80 Science and Technology, H. Kimura, O. Izumi, eds., American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., Warrendale, PA, 1980, pp. 537–43

    Google Scholar 

  31. V.A. Joshi: Titanium Alloys: An Atlas of Structures and Fracture Features, CRC Taylor & Francis, Boca Raton, FL, 2006

    Google Scholar 

  32. H.A. Wriedt, J.L. Murray: Bull. Alloy Phase Diag., 1987, vol. 4, p. 412

    Google Scholar 

  33. R. Boyer, G. Welsch, E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994

    Google Scholar 

  34. K.R. Williams: J. Mater. Sci., 1973, vol. 8, pp. 109–15

    Article  CAS  ADS  Google Scholar 

  35. Z. Guo, A.P. Miodownik, N. Saunders, J.-P. Schille: Scripta Mater., 2006, vol. 54, pp. 2175–78

    Article  CAS  Google Scholar 

  36. Y.T. Zhu: Mater. Sci. Forum, 2006, vols. 503–504, pp. 125–32

    Article  Google Scholar 

  37. A.A. Salem, S.R. Kalidindi, R.D. Doherty, S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 259–68

    Article  CAS  ADS  Google Scholar 

  38. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon: Appl. Phys. Lett., 2006, vol. 89, pp. 121906–09

    Article  ADS  CAS  Google Scholar 

  39. S. Forest, R. Parisot: Rend. Sem. Mat. Univ. Pol. Torino, 2000, vol. 58–1, pp. 99–111

    MathSciNet  Google Scholar 

  40. M.A. Meyers, K.K. Chawla: Mechanical Behavior of Materials, Prentice-Hall, Inc., Upper Saddle River, NJ, 1999

    MATH  Google Scholar 

  41. J.M. Holt: Structural Alloys Handbook, CINDAS/Purdue University, West Lafayette, IN, 1996

    Google Scholar 

  42. T.H. Courtney: Mechanical Behavior of Materials, 2nd ed., McGraw-Hill Higher, New York, NY, 2000

    Google Scholar 

  43. I.A. Ovid’ko, A.G. Sheinerman: Rev. Adv. Mater. Sci., 2007, vol. 16, pp. 1–9

    CAS  Google Scholar 

  44. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia: Appl. Phys. Lett., 2008, vol. 92, pp. 081903-1–081903-3

    ADS  Google Scholar 

  45. Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, E.J. Lavernia: Adv. Mater., 2008, vol. 20, pp. 3028–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the United States Office of Naval Research (Grant No. N00014-04-1-0370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Ertorer.

Additional information

Manuscript submitted March 19, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ertorer, O., Zúñiga, A., Topping, T. et al. Mechanical Behavior of Cryomilled CP-Ti Consolidated via Quasi-Isostatic Forging. Metall Mater Trans A 40, 91–103 (2009). https://doi.org/10.1007/s11661-008-9688-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9688-x

Keywords

Navigation