Skip to main content
Log in

Type IV Cracking Susceptibility in Weld Joints of Different Grades of Cr-Mo Ferritic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Relative type-IV cracking susceptibility in 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb ferritic steel weld joint has been assessed. The type-IV cracking was manifested as preferential accumulation of creep deformation and cavitation in the relatively soft intercritical region of heat affected zone of the weld joint. The type-IV cracking susceptibility has been defined as the reduction in creep-rupture strength of weld joint compared to its base metal. The 2.25Cr-1Mo steel exhibited more susceptibility to type-IV cracking at relatively lower temperatures; whereas, at higher temperatures, 9Cr-1MoVNb steel was more susceptible. The relative susceptibility to type-IV cracking in the weld joint of the Cr-Mo steels has been rationalized on the basis of creep-strengthening mechanisms operating in the steels and their venerability to change on intercritical heating during weld thermal cycle, subsequent postweld heat treatment, and creep exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. C.D. Lundin, P. Liu: WRC Bull., 2002, vol. 475, pp. 29–135

    Google Scholar 

  2. K. Laha, K.S. Chandravathi, K. Bhanu Sankara Rao, S.L. Mannan: Int. J. Pressure Vessels Piping, 2000, vol. 77, pp. 761–69

    Article  CAS  Google Scholar 

  3. H.J. Shüller, L. Haigh, A. Woitscheck: Der Machinenschaden, 1974, vol. 47, pp. 1–13

    Google Scholar 

  4. C.J. Middleton, J.M. Brear, R. Munson, and R. Viswanathan: Proc. Advances in Materials Technology for Fossil Power Plants, R. Viswanathan, W.T. Braker, and J.D. Parker, eds., University of Wales, Swansea, 2001, pp. 69–78.

  5. S.J. Brett: Proc. Advances in Materials Technology for Fossil Power Plants, R. Viswanathan, W.T. Braker, and J.D. Parker, eds., University of Wales, Swansea, 2001, pp. 343–51.

  6. I.A. Shibli: Engineering Issues in Turbine Machinery, Power Plant and Renewables, Trinity College, Dublin, Ireland, A. Strang, R.D. Conroy, W.M. Banks, M. Blacker, J. Leggett, G.M. McColvin, S. Simpson, M. Smith, F. Starr, and R.W. Vantone, eds., The Institute of Materials, Minerals and Mining, London, 2003, pp. 261–79

  7. K. Laha, K.S. Chandravathi, K. Bhanu Sankara Rao, and S.L. Mannan: Heat Resistant Materials, Gatlinburg, TN, 1995, pp. 399–404.

  8. K.S. Chandravathi, K. Laha, K. Bhanu Sankara Rao, S.L. Mannan: Mater. Sci. Technol., 2001, vol. 17, pp. 559–65

    CAS  Google Scholar 

  9. C.D. Lundin, J.A. Henning, R. Menon, and K.K. Khan: ORNL Report No. ORNL/Sub/81-07685/02&77, Oak Ridge National Laboratory, Oak Ridge, TN, 1987

  10. M. Nakashoro, S. Kihara, F. Kishimoto, T. Fujimori: ISIJ Int., 1990, vol. 30, pp. 823–28

    Article  Google Scholar 

  11. V.S. Srinivasan, K. Laha, K. Bhanu Sankara Rao, S.L. Mannan, B. Raj: Trans. Ind. Inst. Met., 2005, vol. 58 (2–3), pp. 255–59

    CAS  Google Scholar 

  12. K. Laha, K.S. Chandravathi, P. Parameswaran, S.L. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68

    Article  ADS  CAS  Google Scholar 

  13. L. Dejun, K. Shinozaki, H. Kuriki, H. Harada, K. Ohishi: Sci. Technol. Weld. Join., 2003, vol. 8 (4), pp. 296–302

    Article  CAS  Google Scholar 

  14. G. Eggeler, A. Ramteke, M. Coleman, B. Chew, G. Peter, A. Burblies, J. Hald, C. Jefferey, J. Rantala, M. deWhite, R. Mohrmann: Int. J. Pressure Vessels Piping, 1994, vol. 60, pp. 237–57

    Article  CAS  Google Scholar 

  15. B.G. Ivarsson, R. Sandstrom: in Creep and Fracture of Engineering Materials and Structure, B. Wilshire, D.R.J. Owen, eds., Pineridge Press, Swansea, 1981, pp. 661–69

    Google Scholar 

  16. B.J. Cane: Acta Metall., 1981, vol. 29, pp. 1581–91.

    Article  CAS  Google Scholar 

  17. J.M. Vitek, R.H. Klueh: Metall. Trans. A, 1983, vol. 14A, pp. 1047–55

    ADS  Google Scholar 

  18. P.J. Ennis, A. Zielinska-Lipiec, O. Wachter, A. Czyrska-Filemonowicz: Acta Mater., 1997, vol. 45 (12), pp. 4901–07

    Article  CAS  Google Scholar 

  19. R.G. Baker, J. Nutting: J. Iron Steel Inst., 1956, vol. 192, pp. 257–68

    Google Scholar 

  20. B.W. Jones, C.R. Hills, D.H. Polonis: Metall. Trans. A, 1991, vol. 22A, pp. 1049–58

    ADS  CAS  Google Scholar 

  21. K. Kimura, H. Kushima, F. Abe, K. Suzuki, S. Kumai, and A. Satoh: Advanced Materials for 21st Century Turbines and Power Plant, Cambridge, UK, 2000, A. Straang, W.M. Banks, R.D. Conroy, G.M. McColvin, J.C. Neal, and S. Simpson, eds., The Institute of Materials, London, 2000, pp. 590–602

  22. H.K. Danielsen, J. Hald: Energy Mater., 2006, vol. 1 (1), pp. 49–57

    Article  CAS  Google Scholar 

  23. P.J. Ennis and A. Czyrska-Filemonowicz: Sadhana, 2003, vol. 28, Parts 3&4, pp. 709–30

  24. P. Roy and T. Lauritzen: Weld. J.– Res. Suppl., 1986, pp. 45s–47s

  25. Y. Tsuchida, K. Okamoto, Y. Tokunaga: Weld. Int., 1996, vol. 10 (6), pp. 27–33

    Article  Google Scholar 

  26. F. Abe, M. Igarashi, S. Anikawa, M. Tabuchi, T. Itagaki, K. Kimura, and K. Yamaguchi: Advanced Materials for 21st Century Turbines and Power Plant, Cambridge, UK, 2000, A. Straang, W.M. Banks, R.D. Conroy, G.M. McColvin, J.C. Neal, and S. Simpson, eds., The Institute of Materials, London, 2000, pp. 129–42

  27. M. Morinaga, R. Hashizume and Y. Murata: Materials for Advanced Power Engineering, Part 1, Liege, Belgium, D. Coutsouradis, J.H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. Malik, D.B. Meadowcroft, V. Regis, R.B. Scarlin, F. Schubert, and D.V. Thronton eds., Dordrecht, Kluwer Acedamic Publishers, 1994, pp. 319–28

  28. Y. Hasegawa, M. Ohgahi, and Y. Okamura: Int. Conf. Advances in Materials Technology for Fossil Power Plants, University of Wales, Swansea, April 5–6, 2001, R. Viswanathan, W.T. Braker, and J.D. Parker, eds., The Institute of Metals, London, 2001, pp. 457–66

  29. F. Abe, M. Tabuchi, M. Kondo, S. Tsukamoto: IJVP, 2007, vol. 84, pp. 44–52

    Article  CAS  Google Scholar 

  30. P. Hofer, M.K. Miller, S.S. Babu, S.A. David, H. Cerjak: ISIJ Int., 2002, vol. 42, pp. S62–S66

    Article  CAS  Google Scholar 

  31. M. Tabuchi, H. Hongo, and Y. Takahashi: Proc. ASME Pressure Vessels and Piping Division Conference, Part III, Vancouver, BC, Canada, July 2006, pp. 23–27

  32. K. Sawada, M. Takeda, M. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine: Mater. Sci. Eng., 1999, vol. A267, pp. 19–25

    CAS  Google Scholar 

  33. N. Abe, Y. Kunisada, T. Sugiyama, T. Nagamine: Rivita Italian Delta Saldatura, 1990, vol. 2, pp. 44–51

    Google Scholar 

  34. M. DeWitte, C. Coussement: Mater. High Temp., 1991, vol. 9 (4), pp. 178–84

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Raj, Director, Indira Gandhi Center for Atomic Research (Kalpakkam, India), for his keen interest in this work. The authors thank S. Goyal for help carrying out the finite element analysis. The authors also thank N.S. Thampi for experimental assistance in conducting creep tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Laha.

Additional information

Manuscript submitted on July 30, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laha, K., Chandravathi, K., Parameswaran, P. et al. Type IV Cracking Susceptibility in Weld Joints of Different Grades of Cr-Mo Ferritic Steel. Metall Mater Trans A 40, 386–397 (2009). https://doi.org/10.1007/s11661-008-9724-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9724-x

Keywords

Navigation