Skip to main content
Log in

Hot Ductility of Nb- and Ti-Bearing Microalloyed Steels and the Influence of Thermal History

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The hot ductility of Nb, Ti, and Nb-Ti containing steels has been studied under direct-cast conditions. A Gleeble 3500 thermomechanical simulator was used to determine hot ductility over the temperature range 1100 °C to 700 °C at a low strain rate of 7.5 × 10−4 s−1. Tensile samples were cooled at two different cooling rates, 100 °C/min and 200 °C/min, simulating, respectively, thick and thin slab casting processes. Complex thermal patterns designed to simulate the cooling conditions experienced near the surface of a slab during continuous casting were carried out for the Nb-Ti steel. The Nb-Ti steel had lower ductility than both the Nb and Ti steels. Increasing the cooling rate generally deteriorated ductility. The low recovery of ductility at higher temperatures is explained in terms of a low strain rate and fine precipitation delaying the onset of dynamic recrystallization. This can promote intergranular cracking as a result of grain boundary sliding in the austenite. At lower temperatures, ductility was further reduced due to the formation of thin ferrite films at the prior austenite grain boundaries. Simulating the thermal history experienced near the surface of thin (90 mm) cast slab improved ductility of the Nb-Ti steel by promoting coarser NbTi(C,N). This exposes a potential flaw in a simplified hot-ductility test: a failure to accurately represent the influence of the thermomechanical schedule on precipitation and, hence, hot ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi, Y. Ohmori: Mater. Sci. Technol., 1990, vol. 6 (9), pp. 793–806

    CAS  Google Scholar 

  2. R. Abushosha, O. Comineli, B. Mintz: Mater. Sci. Technol., 1999, vol. 15 (3), pp. 278–86

    CAS  Google Scholar 

  3. R. Abushosha, S. Ayyad, B. Mintz: Mater. Sci. Technol., 1998, vol. 14 (4), pp. 346–51

    CAS  Google Scholar 

  4. B. Mintz, S. Yue, J.J. Jonas: Int. Mater. Rev., 1991, vol. 36 (5), pp. 187–217

    CAS  Google Scholar 

  5. B. Mintz, R. Abushosha: Mater. Sci. Technol., 1992, vol. 8 (2), pp. 171–77

    CAS  Google Scholar 

  6. B. Mintz: ISIJ Int., 1999, vol. 39 (9), pp. 833–55

    Article  CAS  Google Scholar 

  7. R. Abushosha, R. Vipond, B. Mintz: Mater. Sci. Technol., 1991, vol. 7 (7), pp. 613–21

    CAS  Google Scholar 

  8. T.N. Baker: Titanium Technology in Microalloyed Steels, The Institute of Materials, London, 1997, pp. 98–113

    Google Scholar 

  9. O. Comineli, R. Abushosha, B. Mintz: Mater. Sci. Technol., 1999, vol. 15 (9), pp. 1058–68

    CAS  Google Scholar 

  10. B. Mintz: Ironmaking and Steelmaking, 2000, vol. 27 (5), pp. 343–47

    Article  CAS  Google Scholar 

  11. P.A. Manohar and M. Ferry: Proc. Materials 98, Biennial Conf. of the Institute of Materials Engineering Australasia, Ltd., Wollongong, Australia, 1988, pp. 131–38

  12. R. Abushosha, R. Vipond, B. Mintz: Mater. Sci. Technol., 1991, vol. 7 (12), pp. 1101–07

    CAS  Google Scholar 

  13. H. Zou, J.S. Kirkaldy: Metall. Trans. A, 1991, vol. 22A, pp. 1511–24

    ADS  CAS  Google Scholar 

  14. S. Okaguchi, T. Hashimoto: ISIJ Int., 1992, vol. 32 (3), pp. 283–90

    Article  CAS  Google Scholar 

  15. H. Luo, L.P. Karjalainen, D. Porter, H. Limatainen, Y. Zhang: ISIJ Int., 2002, vol. 42 (3), pp. 273–82

    Article  CAS  Google Scholar 

  16. C.R. Killmore: BlueScope Steel, Port Kembla, Australia, private communication, 2002

  17. B. Mintz: Mater. Sci. Technol., 1996, vol. 12 (2), pp. 132–38

    CAS  Google Scholar 

  18. A. Cowley, R. Abushosha, B. Mintz: Mater. Sci. Technol., 1998, vol. 14 (11), pp. 1145–53

    CAS  Google Scholar 

  19. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721–27

    CAS  Google Scholar 

  20. B. Mintz, R. Abushosha, O. Comineli, and S. Ayyad: Proc. 7th Int. Symp. on Physical Simulation of Casting, Hot Rolling and Welding, National Research Institute of Japan, Tsukuba, Japan, 1997, pp. 449–59

  21. B. Mintz, J.M. Stewart, D.N. Crowther: ISIJ Int., 1987, vol. 27, pp. 959–64.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Australian Research Council and BlueScope Steel for financial support under an ARC-Linkage Grant. Special thanks are due to Mr. Robert De Jong for his assistance with the Gleeble tests and Mr. Greg Tillman for his assistance with metallographic techniques. We also thank Professor Paul Munroe for his assistance with the use of TEM facilities at the UNSW (Sydney, Australia). We thank the University of Wollongong for the provision of laboratory facilities and permission to publish our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.R. Carpenter.

Additional information

Manuscript submitted May 6, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, K., Dippenaar, R. & Killmore, C. Hot Ductility of Nb- and Ti-Bearing Microalloyed Steels and the Influence of Thermal History. Metall Mater Trans A 40, 573–580 (2009). https://doi.org/10.1007/s11661-008-9749-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9749-1

Keywords

Navigation