Skip to main content
Log in

Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work addresses functional fatigue of binary NiTi and ternary NiTiCu (with 5, 7.5, and 10 at. pct Cu) shape memory (SM) spring actuators. We study how the alloy composition and processing affect the actuator stability during thermomechanical cycling. Spring lengths and temperatures were monitored and it was found that functional fatigue results in an accumulation of irreversible strain (in austenite and martensite) and in increasing martensite start temperatures. We present phenomenological equations that quantify both phenomena. We show that cyclic actuator stability can be improved by using precycling, subjecting the material to cold work, and adding copper. Adding copper is more attractive than cold work, because it improves cyclic stability without sacrificing the exploitable actuator stroke. Copper reduces the width of the thermal hysteresis and improves geometrical and thermal actuator stability, because it results in a better crystallographic compatibility between the parent and the product phase. There is a good correlation between the width of the thermal hysteresis and the intensity of irrecoverable deformation associated with thermomechanical cycling. We interpret this finding on the basis of a scenario in which dislocations are created during the phase transformations that remain in the microstructure during subsequent cycling. These dislocations facilitate the formation of martensite (increasing martensite start (M S ) temperatures) and account for the accumulation of irreversible strain in martensite and austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. FEI is a registered trademark of FEI Company, Hillsboro, OR.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  3. HBM is a registered trademark of Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany.

References

  1. A. Ölander: Z. Kristall., 1932, vol. 84A, pp. 145–48.

    Google Scholar 

  2. L.C. Chang and T.A. Read: Trans. AIME, 1951, vol. 189, pp. 47–52.

    Google Scholar 

  3. J.W. Christian: The Theory of Transformation in Metals and Alloys, 3rd ed., Pergamon Press, Oxford, United Kingdom, 2002, pp. 1102–13.

    Google Scholar 

  4. H. Funakubo: Shape Memory Alloys, Gordon and Breach Science Publishers, New York, NY, 1984, pp. 27–30.

    Google Scholar 

  5. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–687.

    Article  CAS  Google Scholar 

  6. E. Hornbogen: in Advanced Structural and Functional Materials, W.G.J. Bunk, ed., Springer-Verlag, Heidelberg, Germany, 1991, pp. 133–63.

    Google Scholar 

  7. L. Delaey: in Phase Transformations in Materials, Materials Science and Technology–Comprehensive Treatment–Volume 5, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH, Weinheim, Germany, 1991, pp. 339–404.

    Google Scholar 

  8. K. Otsuka and C.M. Wayman: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 1–26.

    Google Scholar 

  9. J. Van Humbeeck: Mater. Sci. Eng., A, 1999, vols. A273–A275, pp. 134–48.

    Google Scholar 

  10. G.S. Vanison: Mater. Des., 1986, vol. 7, pp. 142–46.

    Google Scholar 

  11. D. Stöckel: in Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman, eds., Butterworth-Heinemann, Ltd., Tiptree, Essex, United Kingdom, 1990, pp. 283–94.

    Google Scholar 

  12. A.D. Johnson: State-of-the Art of Shape Memory Actuators, http://tinialloy.com.

  13. I. Ohkata and Y. Suzuki: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 240–66.

    Google Scholar 

  14. T. Duerig, A. Pelton, and D. Stöckel: Mater. Sci. Eng., A, 1999, vols. A273–A275, pp. 149–60.

    Google Scholar 

  15. H.J. Lee and J.J. Lee: Smart Mater. Struct., 2000, vol. 9, pp. 817–23.

    Article  ADS  Google Scholar 

  16. A.V. Srinivasan and D.M. McFarland: Smart Structures—Analysis and Design, Cambridge University Press, Cambridge, United Kingdom, 2001, pp. 26–72.

    Google Scholar 

  17. W. Tang, B. Sundmann, R. Sandström, and C. Quiu: Acta Mater., 1999, vol. 47, pp. 3457–68.

    Article  CAS  Google Scholar 

  18. D.C. Drennen, C.M. Jackson, and H.J. Wagner: “The Development of Melting and Casting Procedures for NiTinol Nickel-Base Alloys,” SC-CR-69-3070, Contract Report, Sandia Laboratories, Albuquerque, 1968.

  19. J. Khalil-Allafi, A. Dlouhy, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255–74.

    Article  CAS  Google Scholar 

  20. W. Huang: Mater. Des., 2002, vol. 23, pp. 11–19.

    CAS  ADS  Google Scholar 

  21. M. Mertmann and M. Wuttig: Proc. Actuator 2004, 9th Int. Conf. on New Actuators, HVG Hanseatische Veranstaltungs GmbH, Bremen, Germany, 2004, pp. 72–77.

  22. B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, and S. Miyazaki: Mater. Sci. Eng., A, 1995, vol. A202, pp. 148–56.

    CAS  Google Scholar 

  23. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu: Mater. Sci. Eng., A, 1999, vols. A273–A275, pp. 658–63.

    Google Scholar 

  24. A. Biscarini, B. Coluzzi, G. Mazzolai, A. Tuissi, and F.M. Mazzolai: J. Alloys Compd., 2003, vol. 355 (1–2), pp. 52–57.

    Article  CAS  Google Scholar 

  25. H. Sehitoglu, I. Karaman, X. Zhang, A. Viswanath, Y. Chumlyakov, and H.J. Maier: Acta Mater., 2001, vol. 49 (17), pp. 3621–34.

    Article  CAS  Google Scholar 

  26. F.J. Gil and J.A. Planell: J. Biomed. Mater. Res., 1999, vol. 48 (5), pp. 682–88.

    Article  CAS  PubMed  Google Scholar 

  27. R.H. Bricknell, K.N. Melton, and O. Mercier: Metall. Trans. A, 1979, vol. 10A, pp. 693–97.

    CAS  ADS  Google Scholar 

  28. M. Mertmann: Memory Metalle, Wein am Rhein, personal communication, September 25, 2008.

  29. J. Beyer, B. Koopman, P.A. Besseling, and P.F. Willemse: Mater. Sci. Forum, 1990, vols. 56–58, pp. 773–78.

    Article  Google Scholar 

  30. T. Waram, R. Sowerby, and M. Mailvaganam: SMST-97, Proc. 2nd Int. Conf. on Shape Memory and Superelastic Technologies, A. Pelton, D. Hodgson, S. Russel, and T. Duerig, eds., SMST, Santa Clara, CA, 1997, pp. 201–06.

  31. S. Besseghini, L. Mirri, and A. Tuissi: SMST-97, Proc. 2nd Int. Conf. on Shape Memory and Superelastic Technologies, A. Pelton, D. Hodgson, S. Russel, and T. Duerig, eds., SMST, Santa Clara, CA, 1997, pp. 195–200.

  32. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Mater. Sci. Eng., A, 2004, vol. A378, pp. 24–33.

    CAS  Google Scholar 

  33. M. Wagner, J.K. Yu, G. Kausträter, and G. Eggeler: Proc. Actuator 2004, 9th Int. Conf. on New Actuators, HVG Hanseatische Veranstaltungs GmbH, Bremen, Germany, 2004, pp. 629–32.

  34. J. van Humbeeck: J. Phys. IV, 1991, vol. C4, pp. 189–87.

    Google Scholar 

  35. M. Sade, C. Damiani, R. Gastien, F.C. Lovey, J. Malarriy, and A. Yawny: Smart Mater. Struct., 2007, vol. 16, pp. 126–36.

    Article  ADS  Google Scholar 

  36. Z. Moumni, A. Van Herpen, and P. Riberty: Smart Mater. Struct., 2005, vol. 14, pp. 287–92.

    Article  ADS  Google Scholar 

  37. K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.

    Article  CAS  Google Scholar 

  38. J. Olbricht: Mater. Sci. Eng., A, 2008, vols. A481–A482, pp. 142–45.

    Google Scholar 

  39. E. Hornbogen: J. Mater. Sci., 2004, vol. 39 pp. 385–99.

    Article  CAS  ADS  Google Scholar 

  40. C. Grossmann, J. Frenzel, V. Sampath, T. Depka, A. Oppenkowski, C. Somsen, K. Neuking, W. Theisen, and G. Eggeler: Mat.-wiss. Werkstofftech./Mater. Sci. Eng. Technol., 2008, vol. 39 (8), pp. 499–510.

    Article  CAS  Google Scholar 

  41. J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi: Nature Mater., 2006, vol., 5 pp. 286–90.

    Article  CAS  ADS  Google Scholar 

  42. J. Cui: Materials Analysis and Chemical Science, GE Global Research Center, Niskayuan, NY; Department of Materials Science and Engineering, University of Maryland, College Park, MD, personal communication, 2008.

  43. J.M. Ball and R.D. James: Philos. Trans. R. Soc. London, Ser. A, 1992, vol. 338, pp. 389–450.

    Article  MATH  CAS  ADS  Google Scholar 

  44. R.D. James and Z. Zhang: in Magnetism and Structure in Functional Materials, Springer Series in Materials Science, L. Manosa, A. Planes, and A. Saxena, eds., Springer, New York, NY, 2005, vol. 79, pp. 159–75.

  45. J. Frenzel, Z. Zhang, Ch. Somsen, K. Neuking, and G. Eggeler: Acta Mater., 2007, vol. 55, pp. 1331–41.

    Article  CAS  Google Scholar 

  46. J. Burow, E. Prokofiev, C. Somsen, J. Frenzel, R.Z. Valiev, and G. Eggeler: Mater. Sci. For. Vols., 2008, vols. 584–586, pp. 852–57.

    Google Scholar 

  47. J. Frenzel, J. Pfetzing, K. Neuking, and G. Eggeler: Mater. Sci. Eng., A, 2008, vols. 481–482, pp. 635–38.

    Google Scholar 

  48. Z. Zhang, J. Frenzel, K. Neuking, and G. Eggeler: Mater. Trans. JIM, 2006, vol. 47 (3), pp. 661–69.

    Article  CAS  Google Scholar 

  49. J. Frenzel, Z. Zhang, K. Neuking, and G. Eggeler: J. Alloys Compd., 2004, vol. 385, pp. 214–23.

    Article  CAS  Google Scholar 

  50. Z. Zhang, J. Frenzel, K. Neuking, and G. Eggeler: Acta Mater., 2005, vol. 53 (14), pp. 3971–85.

    Article  CAS  Google Scholar 

  51. M. Frotscher, A. Kröger, C. Somsen, K. Neuking, R. Steegmüller, A. Schüßler, and G. Eggeler: Pract. Metallogr., 2007, vol. 44, pp. 208–20.

    CAS  Google Scholar 

  52. Ch. Grossmann, T. Depka, and A. Oppenkowski: Project Thesis, Institut für Werkstoffe, Ruhr-Universitaet Bochum, Bochum, Germany, 2007.

  53. Dubbel—Taschenbuch für den Maschinenbau, W. Beitz and K.-H. Küttner, eds., 16. Auflage, Springer-Verlag, Berlin, 1987, p. G53.

  54. S. Gollerthan, M.L. Young, A. Baruj, J. Frenzel, W.W. Schmahl, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 1015–25.

    Article  CAS  Google Scholar 

  55. T.H. Nam, T. Saburi, and K. Shimizu: Mater. Trans., JIM, 1990, vol. 31 (11), pp. 959–67.

    Google Scholar 

  56. O. Mercier and K.N. Melton: Metall. Trans. A, 1979, vol. 10A, pp. 387–89.

    CAS  ADS  Google Scholar 

  57. K. Bhattacharya: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford, United Kingdom, 2004, pp. 143–50.

    Google Scholar 

  58. J. Ortin and L. Delaey: Int. J. Non-Lin. Mech., 2002, vol. 37, pp. 1275–81.

    Article  MATH  Google Scholar 

  59. R. Delville, D. Schryvers, Z. Zhang, and R.D. James: Scripta Mater., 2009, vol. 60, pp. 293–96.

    Article  CAS  Google Scholar 

  60. Q.P. Sun, T.T. Xu, and X.Y. Zhang: J. Eng. Mater. Technol., 1999, vol. 121, pp. 38–43.

    Article  CAS  Google Scholar 

  61. D. Schryvers: TEM micrograph in Ref. 57.

  62. R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H.J. Maier: Acta Mater., 2004, vol. 52, pp. 3383–3402.

    Article  CAS  Google Scholar 

  63. J. Perkins: Metall. Trans., 1973, vol. 4, pp. 2709–21.

    Article  CAS  Google Scholar 

  64. S. Miyazaki, Y. Igo, and K. Otsuka: Acta Metall., 1986, vol. 34, pp. 2045–51.

    Article  CAS  Google Scholar 

  65. S. Eucken and T.W. Duerig: Acta Metall., 1989, vol. 37, pp. 2245–52.

    Article  CAS  Google Scholar 

  66. Webelements, http://www.webelements.com/.

  67. M. Wagner: Doctoral Thesis, Ruhr-Universität Bochum, Europäischer Universitätsverlag, Bochum, Germany, 2005.

Download references

Acknowledgments

The authors acknowledge funding through projects A1, A8, and C7 of the collaborative research center SFB459 (Shape Memory Technology) funded by the Deutsche Forschungsgemeinschaft (DFG), North Rhine-Westphalia, and the Ruhr University Bochum. The authors acknowledge assistance from and fruitful discussions with Drs. Jun Cui (providing λ 2 data), Klaus Neuking (processing of actuator springs), and Christoph Somsen (TEM), and fruitful discussions with Dr.-Ing. Martin Wagner (Emmy Noether Gruppe Zwillingsbildung, funded by DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Frenzel.

Additional information

Manuscript submitted November 25, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossmann, C., Frenzel, J., Sampath, V. et al. Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators. Metall Mater Trans A 40, 2530–2544 (2009). https://doi.org/10.1007/s11661-009-9958-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9958-2

Keywords

Navigation