Skip to main content
Log in

Observations of Facet Formation in Near-α Titanium and Comments on the Role of Hydrogen

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Faceted features are frequently observed on the fracture surfaces of titanium alloys that have failed by static loading, continuous cycling, dwell fatigue loading, and stress corrosion cracking (SCC). Although the facets formed under different loading conditions seem qualitatively similar, there are significant differences in the spatial and crystallographic orientations of the facets as well as subtle differences in facet surface topography. The current study compares and contrasts facets for various loading conditions (cyclic, creep, SCC, and dwell) in the Ti-8Al-1Mo-1V alloy with the primary motivation being to understand the mechanisms of crack initiation and faceted growth during dwell fatigue. The spatial and crystallographic orientations of the facets were determined using quantitative tilt fractography and electron backscatter diffraction, whereas facet topography was examined using ultra-high-resolution scanning electron microscopy. Collectively, the experimental observations suggest that hydrogen may play an important role in facet formation and accelerating small crack growth rates during dwell fatigue loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. L. Wagner, J.K. Gregory, A. Gysler, and G. Lütjering: Proc. Second Eng. Found. Int. Conf./Workshop, R.O. Ritchie and J. Lankford, eds., Santa Barbara, CA, 1986, pp. 117–27.

  2. C.C. Wojcik, K.S. Chan, and D.A. Koss: Acta Metall., 1988, vol. 36, no. 5, pp. 1261-70.

    Article  CAS  Google Scholar 

  3. F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53, pp. 555-67.

    Article  CAS  Google Scholar 

  4. A.L. Pilchak, R.E.A. Williams, and J.C. Williams, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 106-24.

    Article  CAS  Google Scholar 

  5. J.E. Hack and G.R. Leverant: Metall. Trans. A, 1982, vol. 13A, pp. 1729-38.

    Google Scholar 

  6. W.J. Evans and M.R. Bache: Int. J. Fatigue, 1994, vol. 16, no. 7, pp. 443-52.

    Article  CAS  Google Scholar 

  7. V. Sinha, M.J. Mills, and J.C. Williams: J. Mater. Sci., 2007, vol. 42, pp. 8334-41.

    Article  CAS  Google Scholar 

  8. V. Sinha, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37A, no. 6, pp. 2015-26.

    Article  CAS  Google Scholar 

  9. M.C. Brandes: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2008.

  10. J.K. Gregory and H.-G. Brokmeier: Mater. Sci. Eng. A, 1995, vol. 203, pp. 365-72.

    Article  Google Scholar 

  11. E. Richey and R.P. Gangloff: “Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment, and Structures,” ASTM STP 1401, R.D. Kane, ed., American Society for Testing and Materials, West Conshohocken, PA, 2000.

    Google Scholar 

  12. W.J. Evans: Scripta Metall., 1987, vol. 21, no. 4, pp. 469-74.

    Article  CAS  Google Scholar 

  13. M.R. Bache, H.M. Davies, and W.J. Evans: Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Materials, Birmingham, UK, 1996, pp. 1347–54.

  14. M.R. Bache, W.J. Evans, and H.M. Davies: J. Mater. Sci., 1997, vol. 32, pp. 3435-42.

    Article  CAS  Google Scholar 

  15. M.R. Bache: Int. J. Fatigue, 2003, vol. 25, pp. 1079-87.

    Article  CAS  Google Scholar 

  16. D.L. Davidson and D. Eylon: Metall. Trans. A, 1980, vol. 11A, pp. 837-43.

    CAS  Google Scholar 

  17. E. Uta, N. Gey, P. Bocher, M. Humbert, and J. Gilgert: J. Microsc., 2009, vol. 233, no. 3, pp. 451-59.

    Article  CAS  Google Scholar 

  18. B.F. Brown: Stress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys, B.F. Brown, ed., Naval Research Lab, Washington, DC, 1972, pp. 1–16.

  19. D.C. Slavik, J.A. Wert, and R.P. Gangloff: J. Mater. Res., 1993, vol. 8, no. 10, pp. 2482-91.

    Article  Google Scholar 

  20. G. Themelis, S. Chikwembani, and J. Weerman: Mater. Charact., 1990, vol. 24, pp. 27-40.

    Article  CAS  Google Scholar 

  21. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Scripta Mater., 2005, vol. 52, pp. 531-36.

    Article  CAS  Google Scholar 

  22. N.E. Paton, J.C. Williams, J.C. Chesnutt, and A.W. Thompson: Alloy Design for Fatigue and Fracture Resistance, AGARD-CP-185, Technical Editing and Reproduction Ltd., London, UK, 1976, pp. 4-1–4-14.

  23. J.C. Chesnutt, A.W. Thompson, and J.C. Williams: Influence of Metallurgical Factors on the Fatigue Crack Growth Rate in Alpha-Beta Titanium Alloys, Final Technical Report AFML-TR-78-68, 1978.

  24. R.J.H. Wanhill, R. Galatolo, and C.E.W. Looije: Int. J. Fatigue, 1989, vol. 11, no. 6, pp. 4007-16.

    Article  Google Scholar 

  25. F. McBagonluri, E. Akpan, C. Mercer, W. Shen, and W.O. Soboyejo: Trans. ASME, 2005, vol. 127, pp. 46-57.

    CAS  Google Scholar 

  26. F. McBagonluri, E. Akpan, C. Mercer, W. Shen, and W.O. Soboyejo: Mater. Sci. Eng. A, 2005, vol. 405, pp. 111-34.

    Article  Google Scholar 

  27. A.L. Pilchak, A. Bhattacharjee, A.H. Rosenberger, and J.C. Williams: Int. J. Fatigue, 2009, vol. 31, pp. 989-94.

    Article  CAS  Google Scholar 

  28. V. Sinha, J.W. Spowart, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1507-18.

    Article  CAS  Google Scholar 

  29. A.L. Pilchak, A. Bhattacharjee, R.E.A. Williams, and J.C. Williams: Proc. 12th Int. Conf. Fracture, CD proceedings, Ottawa, Canada, 2009.

  30. A.L. Pilchak: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2009.

  31. C.J. Szczepanski, S.K. Jha, J.M. Larsen, and J.W. Jones: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2841-51.

    Article  CAS  Google Scholar 

  32. C.J. Szczepanski: Ph.D. Dissertation, The University of Michigan, Ann Arbor, Michigan, 2008.

  33. J.C. Williams, R.G. Baggerly, and N.E. Paton: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 837-50.

    CAS  Google Scholar 

  34. S. Suri, G.B. Viswanathan, T. Neeraj, D.-H. Hou, and M.J. Mills: Acta Mater., 1999, vol. 47, no. 3 pp. 1019-34.

    Article  CAS  Google Scholar 

  35. M.F. Savage, J. Tatalovich, and M.J. Mills: Philos. Mag., 2004, vol. 84, no. 11 pp. 1127-54.

    Article  CAS  Google Scholar 

  36. D.L. Davidson and J. Lankford: Metall. Trans. A, 1984, vol. 15A, pp. 1931-40.

    CAS  Google Scholar 

  37. T.L. Anderson: Fracture Mechanics: Fundamentals and Applications, 3rd ed., Taylor & Francis Group, Boca Raton, FL, 2005.

    Google Scholar 

  38. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, New York, 1998.

  39. J.V. Bernier, J.-S. Park, A.L. Pilchak, M.G. Glavicic, and M.P. Miller: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3120-33.

    Article  CAS  Google Scholar 

  40. X.G. Zhang and J. Vereecken: Corrosion, 1990, vol. 46, pp. 136-41.

    CAS  Google Scholar 

  41. C.D. Beachem and R.M.N. Pelloux: Fracture Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing and Materials, West Conshohocken, PA, 1965, pp. 210-45.

    Book  Google Scholar 

  42. D.A. Meyn: Metall. Trans., 1972, vol. 3A, pp. 2302-05.

    Article  Google Scholar 

  43. C. Laird: Fatigue Crack Propagation, ASTM STP 415, American Society for Testing and Materials, West Conshohocken, PA, 1967, pp. 131-68.

    Google Scholar 

  44. A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, and B. Yamrom: Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Materials, Birmingham, UK,1996, pp. 1116–23.

  45. A.P. Woodfield: GE Aviation, private communication, November, 2009.

  46. V. Hasija, S. Ghosh, M.J. Mills, and D.S. Joseph: Acta Mater., 2003, vol. 51, pp. 4533-49.

    Article  CAS  Google Scholar 

  47. G. Venkataramani, D. Deka, and S. Ghosh: Trans. ASME, 2006, vol. 356, no. 128, pp. 356-65.

    Google Scholar 

  48. F.P.E. Dunne, A. Walker, and D. Rugg: Proc. Royal Soc. A, 2007, vol. 463, pp. 1467-89.

    Article  CAS  Google Scholar 

  49. K. Kirane, S. Ghosh, M. Groeber, and A. Bhattacharjee: J. Eng. Mater. Technol., 2009, vol. 131, pp. 021003-1 to 021003-14.

    Article  Google Scholar 

  50. F.P.E. Dunne and D. Rugg: Fatigue Fract. Eng. Mater. Struct., 2008, vol. 31, pp. 949-58.

    Article  CAS  Google Scholar 

  51. M.C. Brandes, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, in press. DOI: 10.1007/s11661-010-0407-z.

  52. J.S. Koehler: Phys. Rev. B, 1952, vol. 85, pp. 480-81.

    Article  Google Scholar 

  53. D.S. Shih, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 111-24.

    Article  CAS  Google Scholar 

  54. P.E. Irving and C.J. Beevers: Metall. Trans., 1971, vol. 2A, pp. 613-15.

    Article  Google Scholar 

  55. J.C. Williams: Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I.M. Bernstein, eds., Trans AIME, New York, NY, 1976, pp. 367–81.

  56. J.D. Boyd: Trans. ASM, 1969, vol. 62, pp. 977-88.

    CAS  Google Scholar 

  57. A.R. Troiano: Trans. ASM, 1960, vol. 52, pp. 54-80.

    Google Scholar 

  58. I.M. Robertson and H.K. Birnbaum: Proc. 11 th International Conference on Fracture, CD proceedings, http://www.icf11.com/proceeding/EXTENDED/5759.pdf, accessed 19 Dec 2009.

  59. N.E. Paton and R.A. Spurling: Metall. Trans. A, 1969, vol. 7A, pp. 1769-74.

    Google Scholar 

  60. M.I. Luppo, A. Politi, and G. Vigna: Acta Mater., 53, 2005, pp. 4987-96.

    Article  CAS  Google Scholar 

  61. X.H. Guo, S.Q. Shi, Q.M. Zhang, and X.Q. Ma: J. Nucl. Mater., 2008, vol. 378, pp. 110-19.

    Article  CAS  Google Scholar 

  62. M.R. Louthan: Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 1166-70.

    CAS  Google Scholar 

  63. M.R. Louthan and R.P. Marshall: J. Nucl. Mater., 1963, vol. 9, pp. 170-84.

    Article  CAS  Google Scholar 

  64. R.N. Singh, R. Kishore, S.S. Singh, T.K. Sinha, and B.P. Kashyap: J. Nucl. Mater., 2004, vol. 325, pp. 26-33.

    Article  CAS  Google Scholar 

  65. A.R. Massih and L.O. Jernkvist: Comp. Mater. Sci., 2009, vol. 46, pp. 1091-97.

    Article  CAS  Google Scholar 

  66. M.-S. Yeh and J.-H. Huang: Mater. Sci. Eng. A, 1998, vol. 242, pp. 96-107.

    Article  Google Scholar 

  67. R.H. Rusli: Mater. Sci. Eng. A, 2008, vol. 494, pp. 143-46.

    Article  Google Scholar 

  68. A.W. Bowen: Acta Metall., 1975, vol. 23, no. 11, pp. 1401-09.

    Article  CAS  Google Scholar 

  69. W.J. Evans and C.R. Gostelow: Metall. Trans. A., 1979, vol. 10A, pp. 1837-46.

    CAS  Google Scholar 

  70. J.C. Chesnutt and N.E. Paton: Titanium ’80: Science and Technology, Proc. 4 th World. Conf. on Titanium, H. Kimura and O. Izumi, eds., Kyoto, Japan, 1981, pp. 1855–63.

  71. A.W. Sommer and D. Eylon: Metall. Trans., 1983, vol. 14A, pp. 2178-81.

    CAS  Google Scholar 

  72. W. Shen, A.B.O. Soboyejo, and W.O. Syejo: Metall. Mater. Trans., 2004, vol. 35A, pp. 163-87.

    Article  CAS  Google Scholar 

  73. W. Shen, W.O. Soboyejo, and A.B.O. Soboyejo: Mech. Mater., 2004, vol. 36, no. 1-2, pp. 117-40.

    Article  Google Scholar 

  74. A.A. Shaniavski and A.I. Losev: Fatigue Fract. Eng. Mater. Struct., 2003, vol. 26, no. 4, pp. 329-42.

    Article  CAS  Google Scholar 

  75. L. Toubal, P. Bocher, and A. Moreau: Int. J. Fatigue, 2009, vol. 31, pp. 601-05.

    Article  CAS  Google Scholar 

  76. A. Bhattacharjee, D.M. Norfleet, M.J. Mills, and J.C. Williams, unpublished research, The Ohio State University, Columbus, OH, 2006 and 2009.

  77. V. Sinha, R.B. Schwarz, M.J. Mills, and J.C. Williams: unpublished research, The Ohio State University, Columbus, OH, 2004.

Download references

Acknowledgments

This work was funded partially by the Federal Aviation Administration (Grant 08-G-009) and the Office of Naval Research (Contract No. N00014-06-1-0089). One of the authors (A.L.P.) acknowledges support and encouragement of the Air Force Research Laboratory management and Air Force Contract No. FA8650-07-D-5800 during the preparation of this manuscript. The authors are also grateful to Dr. S. Fox (Timet, Henderson, NV) for providing the bar material used in this study and to Dr. A. Bhattacharjee (Defence Metallurgical Research Lab, Hyderabad, India) for his assistance with sample preparation and measuring the texture of the as-received bar. The authors appreciate the useful discussions related to fatigue and fracture of titanium alloys with Dr. M.C. Brandes (OSU) and the assistance of J. Foltz and A. Young (OSU) with electric discharge machining and stress corrosion cracking experiments, respectively. Finally, the authors would also like to acknowledge Dr. E. Medina and S. Putthanarat (Air Force Research Laboratory, Wright Patterson Air Force Base, OH) for performing the X-ray computed tomography investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Pilchak.

Additional information

Manuscript submitted April 2, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilchak, A.L., Williams, J.C. Observations of Facet Formation in Near-α Titanium and Comments on the Role of Hydrogen. Metall Mater Trans A 42, 1000–1027 (2011). https://doi.org/10.1007/s11661-010-0507-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0507-9

Keywords

Navigation