Skip to main content
Log in

Effect of Strain Rate on Plastic Flow in Zr-Based Metallic-Glass-Reinforced Porous Tungsten Matrix Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The rate-dependent deformation of Zr38Ti17Cu10.5Co12Be22.5 bulk metallic-glass-reinforced porous tungsten matrix composites was investigated over a wide range of strain rates. The composites were examined in two forms: the as-cast composite and the as-extruded composite by extrusion. In addition to showing greater strain hardening, the as-cast composite also shows much more obvious strain rate dependence of flow stress than the as-extruded composite. Microhardness tests were performed on the tungsten and the metallic glass phase in both composites, respectively. The results from the microhardness measurements indicate that the strain rate sensitivity of the as-extruded composite is primarily a result of strain rate sensitivity of the tungsten phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.A. Bruck, T. Christman, A.J. Rosakis, and W.L. Johnson: Scripta Metall. Mater., 1994, vol. 30, pp. 429–34.

    Article  CAS  Google Scholar 

  2. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: J. Mater. Res., 1996, vol. 11, pp. 503–08.

    Article  CAS  Google Scholar 

  3. R.D. Conner, A.J. Rosakis, W.L. Johnson, and D.M. Owen: Scripta Mater., 1997, vol. 37, pp. 1373–78.

    Article  CAS  Google Scholar 

  4. C.J. Gilbert, R.O. Ritchie, and W.L. Johnson: Appl. Phys. Lett., 1997, vol. 71, pp. 476–78.

    Article  CAS  Google Scholar 

  5. J. Jayaraj, D.J. Sordelet, D.H. Kim, Y.C. Kim, and E. Fleury: Corros. Sci., 2006, vol. 48, pp. 950–64.

    Article  CAS  Google Scholar 

  6. Z.F. Zhang, J. Eckeit, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.

    Article  CAS  Google Scholar 

  7. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Intermetallics, 2002, vol. 10, pp. 1071–77.

    Article  CAS  Google Scholar 

  8. D.V. Louzguine, H. Kato, and A. Inoue: Appl. Phys. Lett., 2004, vol. 84, pp. 1088–89.

    Article  CAS  Google Scholar 

  9. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306.

    Article  CAS  Google Scholar 

  10. H. Choi-Yim, R. Busch, U. Köster, and W.L. Johnson: Acta Mater., 1999, vol. 47, pp. 2455–62.

    Article  CAS  Google Scholar 

  11. K.Q. Qiu, A.M. Wang, H.F. Zhang, B.Z. Ding, and Z.Q. Hu: Intermetallics, 2002, vol. 10, pp. 1283–88.

    Article  CAS  Google Scholar 

  12. H. Kato and A. Inoue: Mater. Trans. JIM, 1997, vol. 38, pp. 793–800.

    CAS  Google Scholar 

  13. Z. Bian, M.X. Pan, Y. Zhang, and W.H. Wang: Appl. Phys. Lett., 2002, vol. 81, pp. 4739–41.

    Article  CAS  Google Scholar 

  14. F. Szuecs, C.P. Kim, and W.L. Johnson: Acta Mater., 2001, vol. 49, pp. 1507–13.

    Article  CAS  Google Scholar 

  15. C. Fan, C.F. Li, A. Inoue, and V. Haas: Phys. Rev. B, 2000, vol. 61, pp. 3761–63.

    Article  Google Scholar 

  16. C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.

    Article  CAS  Google Scholar 

  17. Y.F. Sun, B.C. Wei, Y.R. Wang, W.H. Li, T.L. Cheung, and C.H. Sheka: Appl. Phys. Lett., 2005, vol. 87, pp. 051905-1–051905-3.

    Google Scholar 

  18. Z. Bian, G. He, and G.L. Chen: Scripta Mater., 2002, vol. 46, pp. 407–12.

    Article  CAS  Google Scholar 

  19. R.L. Narayan, K. Boopathy, S. Indrani, D.C. Hofmann, and U. Ramamurty: Scripta Mater., 2010, vol. 63, pp. 768–71.

    Article  CAS  Google Scholar 

  20. K. Boopathy, D.C. Hofmann, W.L. Johnson, and U. Ramamurty: J. Mater. Res., 2009, vol. 24, pp. 3611–19.

    Article  CAS  Google Scholar 

  21. R.D. Conner, R.B. Dandliker, and W.L. Johnson: Acta Mater., 1998, vol. 46, pp. 6089–6102.

    Article  CAS  Google Scholar 

  22. H.F. Zhang, A.M. Wang, H. Li, W.S. Sun, B.Z. Jing, Z.Q. Hu, H.N. Cai, L. Wang, and W. Li: J. Mater. Res., 2006, vol. 21, pp. 1351–54.

    Article  CAS  Google Scholar 

  23. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Appl. Phys. Lett., 2007, vol. 90, pp. 081901-1–081901-3.

    Google Scholar 

  24. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, H.F. Zhang, and Z.Q. Hu: Compos. Sci. Technol., 2008, vol. 68, pp. 3396–3400.

    Article  CAS  Google Scholar 

  25. H.A. Bruck, A.J. Rosakis, and W.L. Johnson: J. Mater. Res., 1996, vol. 11, pp. 503–11.

    Article  CAS  Google Scholar 

  26. G. Subhash, R.J. Dowding, and L.J. Kecskes: Mater. Sci. Eng., 2002, vol. A334, pp. 33–40.

    CAS  Google Scholar 

  27. H. Li, G. Subhash, X.L. Gao, L.J. Kecskes, and R.J. Dowding: Scripta Mater., 2003, vol. 49, pp. 1087–92.

    Article  CAS  Google Scholar 

  28. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Intermetallics, 2002, vol. 10, pp. 1071–77.

    Article  CAS  Google Scholar 

  29. T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing, and K.T. Ramesh: J. Mater. Res., 2002, vol. 17, pp. 1441–45.

    Article  CAS  Google Scholar 

  30. L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, and G.S. Yu: Intermetallics, 2005, vol. 13, pp. 827–32.

    Article  Google Scholar 

  31. J. Zhang, J.M. Park, D.H. Kim, and H.S. Kim: Mater. Sci. Eng., 2007, vols. A449–A451, pp. 290–94.

    Google Scholar 

  32. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Mater. Sci. Eng., 2008, vol. A473, pp. 105–10.

    CAS  Google Scholar 

  33. J. Lankford, C.E. Anderson, and S.R. Bodner: J. Mater. Sci. Lett., 1998, vol. 7, pp. 1355–58.

    Article  Google Scholar 

  34. J. Lankford, H. Couque, A. Bose, and C.E. Anderson: Shock Waves and High Strain Rate Phenomena in Materials, Marcel Dekker, New Strain, NY, 1992.

    Google Scholar 

  35. T. Jiao, L.J. Kecskes, T.C. Hufnagel, and K.T. Ramesh: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3439–44.

    Article  CAS  Google Scholar 

  36. H. Li, G. Subbash, L.J. Kecskes, and R.J. Dowding: Mater. Sci. Eng., 2005, vol. A403, pp. 134–43.

    CAS  Google Scholar 

  37. Y.F. Xue, H.N. Cai, L. Wang, F.C. Wang, and H.F. Zhang: Mater. Sci. Eng., 2007, vols. A445–A446, pp. 275–80.

    Google Scholar 

  38. Y.F. Xue, H.N. Cai, L. Wang, H.F. Zhang, and H.W. Cheng: J. Beijing Inst. Technol., 2008, vol. 17, pp. 109–14.

    CAS  Google Scholar 

  39. G. Subhash, Y.J. Lee, and G. Ravichandran: Acta Metall. Mater., 1994, vol. 42, pp. 319–30.

    Article  CAS  Google Scholar 

  40. P.S. Follansbee: Inst. Phys. Conf. Ser., 1989, vol. 102, pp. 213–20.

    CAS  Google Scholar 

  41. K.T. Ramesh and R.S. Coates: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 2625–30.

    CAS  Google Scholar 

  42. W.S. Lee, C.F. Lin, and G.L. Xiea: Mater. Sci. Eng., 1998, vol. A247, pp. 102–12.

    CAS  Google Scholar 

  43. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4067–4109.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 10872032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Xue.

Additional information

Manuscript submitted September 16, 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Y.F., Wang, L., Cai, H.N. et al. Effect of Strain Rate on Plastic Flow in Zr-Based Metallic-Glass-Reinforced Porous Tungsten Matrix Composites. Metall Mater Trans A 42, 3521–3526 (2011). https://doi.org/10.1007/s11661-011-0742-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0742-8

Keywords

Navigation