Skip to main content
Log in

Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser engineered net shaping (LENS) and other similar processes facilitate building of parts with freeform shapes by melting and deposition of metallic powders layer by layer. A-priori estimation of the layerwise variations in peak temperature, build dimension, cooling rate, and mechanical property is requisite for successful application of these processes. We present here an integrated approach to estimate these build attributes. A three-dimensional (3-D) heat transfer analysis based on the finite element method is developed to compute the layerwise variation in thermal cycles and melt pool dimensions in the single-line multilayer wall structure of austenitic stainless steel. The computed values of cooling rates during solidification are used to estimate the layerwise variation in cell spacing of the solidified structure. A Hall–Petch like relation using cell size as the structural parameter is used next to estimate the layerwise hardness distribution. The predicted values of layer widths and build heights have depicted fair agreement with the corresponding measured values in actual deposits. The estimated values of layerwise cell spacing and hardness remain underpredicted and overpredicted, respectively. The slight underprediction of the cell spacing is attributed to the possible overestimation of the cooling rates that may have resulted due to the neglect of convective heat transport within the melt pool. The overprediction of the layerwise hardness is certainly due to the underprediction of corresponding cell spacing. The application of Hall–Petch coefficients, which is strictly valid for wrought and annealed grain structures, to estimate the hardness of as-solidified cellular structures may have also contributed to the overprediction of the layerwise hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.M. Keicher and K.E. Smugeresky: JOM, 1997, vol. 49 (5), pp. 51–54.

    Article  CAS  Google Scholar 

  2. M.L. Griffith, M.E. Schlienger, L.D. Harwell, M.S. Oliver, M.D. Baldwin, M.T. Ensz, J.E. Smugeresky, M. Essien, J. Brooks, C.V. Robino, W.H. Hofmeister, M.J. Wert, and D.V. Nelson: Mater. Des., 1999, vol. 20 (2–3), pp. 107–13.

    Article  Google Scholar 

  3. G.K. Lewis and E. Schlienger: Mater. Des., 2000, vol. 21 (4), pp. 417–23.

    Article  CAS  Google Scholar 

  4. K.L. Schwender, R. Banerjee, P.C. Collins, C.A. Brice, and H.L. Fraser: Scripta Mater., 2001, vol. 45 (10), pp. 1123–29.

    Article  Google Scholar 

  5. P.C. Collins, R. Banerjee, and H.L. Fraser: Scripta Mater., 2003, vol. 48 (10), pp. 1445–50.

    Article  CAS  Google Scholar 

  6. L. Wang and S. Felicelli: Mater. Sci. Eng. A, 2007, vol. 129 (6), pp. 1028–34.

    Google Scholar 

  7. L. Costa, R. Vilar, T. Reti, and A. Deus: Acta Mater., 2005, vol. 53 (14), pp. 3987–99.

    Article  CAS  Google Scholar 

  8. J. Choi and Y. Chang: Int. J. Mach. Tool Manuf., 2005, vol. 45 (4–5), pp. 597–607.

    Article  Google Scholar 

  9. R.R. Unocic and J.N. DuPont: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 143–52.

    Article  CAS  Google Scholar 

  10. A. Vasinonta, J. Beuth, and M.L. Griffith: J. Manufact. Sci. Eng. Trans. ASME, 2001, vol. 123 (4), pp. 615–22.

    Article  Google Scholar 

  11. P. Peyre, P. Aubry, R. Fabbro, R. Neveu, and A. Longuet: J. Phys. D Appl. Phys., 2008, vol. 41 (2), article no. 0254031, pp. 1–10.

  12. W. Hoffmeister, M. Wert, J. Smugeresky, J.A. Philliber, M.L. Griffith, and M. Ensz: JOM, 1999, vol. 51 (7), JOM-e (www.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.html).

  13. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2228–36.

    Article  CAS  Google Scholar 

  14. S. Ghosh and J. Choi: J. Manufact. Sci. Eng. Trans. ASME, 2007, vol. 129 (2), pp. 319–32.

    Article  Google Scholar 

  15. S.M. Kelly and S.L. Kampe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1861–67.

    Article  CAS  Google Scholar 

  16. B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, and E.J. Lavernia: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2237–45.

    Article  CAS  Google Scholar 

  17. J.E. Smugeresky, D.M. Keicher, J.A. Romero, M.L. Griffith, and L.D. Howell: DOI:10.2172/554828, Technical Report, Sandia National Laboratories, Livermore, CA, 1997.

  18. Y. Xiong, W.H. Hofmeister, Z. Cheng, J.E. Smugeresky, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2009, vol. 57 (18), pp. 5419–29.

    Article  CAS  Google Scholar 

  19. Q. Xu, V.V. Gupta, and E.J. Lavernia: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 527–39.

    Article  CAS  Google Scholar 

  20. J. Allison, M. Lei, C. Wolverton, and X. Su: JOM, 2006, vol. 58 (11), pp. 28–35.

    Article  CAS  Google Scholar 

  21. J. Allison, D. BackMann, and L. Christodoulou: JOM, 2006, vol. 58 (11), pp. 25–27.

    Article  Google Scholar 

  22. V. Neela and A. De: Int. J. Adv. Manuf. Technol., 2009, vol. 45 (9–10), pp. 935–43.

    Article  Google Scholar 

  23. S. Bag and A. De: Sci. Technol. Weld. Join., 2009, vol. 14 (4), pp. 333–45.

    Article  CAS  Google Scholar 

  24. W.S. Chang and S.J. Na: J. Mater. Processing Technol., 2002, vol. 120 (1–3), pp. 208–14.

    Article  CAS  Google Scholar 

  25. W. Koechner: Solid State Laser Engineering, 3rd ed., Springer-Verlag, Berlin, 1992, p. 194.

    Google Scholar 

  26. ABAQUS Reference Manual, ch. 6, Heat Transfer Analysis, Hibbit, Karlson & Sorensen, Pawtucket, RI, 2001.

  27. D. Tabor: Rev. Phys. Technol., 1970, vol. 1 (3), pp. 145–79.

    Article  Google Scholar 

  28. J.R. Cahoon, W.H. Broughton, and A.R. Kutzak: Metall. Trans., 1971, vol. 2, pp. 1979–83.

    CAS  Google Scholar 

  29. B.P. Kashyap and K. Tangri: Acta Metall. Mater., 1995, vol. 43 (11), pp. 3971–81.

    Article  CAS  Google Scholar 

  30. K.K. Singh, S. Sangal, and G.S. Murty: Mater. Sci. Technol., 2002, vol. 18 (2), pp. 165–72.

    Article  CAS  Google Scholar 

  31. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw Hill Book Co., Singapore, 1998, p. 330.

    Google Scholar 

  32. F.A. McClintock and A.S. Argon: Mechanical Behaviour of Materials, Addison-Wesley Publ. Co., Reading, MA, 1966, p. 457.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Defense R & D Organisation, India for this study. Processing and characterization support from Dr. Vijay Singh, U. Savitha, and the Structural & Failure Analysis Group of DMRL are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De.

Additional information

Manuscript submitted November 11, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manvatkar, V.D., Gokhale, A.A., Jagan Reddy, G. et al. Estimation of Melt Pool Dimensions, Thermal Cycle, and Hardness Distribution in the Laser-Engineered Net Shaping Process of Austenitic Stainless Steel. Metall Mater Trans A 42, 4080–4087 (2011). https://doi.org/10.1007/s11661-011-0787-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0787-8

Keywords

Navigation